Accurate whole-rock geochemistry analysis by combined ICP-OES and LA-ICP-MS instruments

ICP-OES and LA-ICP-MS instruments routinely used to assess the geochemical properties of the various natural and synthetic materials. In this contribution, the analytical routines and method development procedures of the ICP-OES and LA-ICP-MS facilities installed at the İstanbul University-Cerrahpaşa Geological Engineering Department, Geochronology and Geochemistry Laboratory have been evaluated using well-known international rock standards. Sample preparation techniques, method development, experimental setup and measurement conditions for the both ICP-OES and LA-ICP-MS instruments were discussed and specific analyze results of NIST SRM 614, BCR-2, AGV-2, BCR-2G and AGV-2G were evaluated. Flux-free USGS glass standards were produced by in-house techniques and flux-bearing glasses were produced by fusion of sample with the mixture of ultra-pure lithium-tetraborate, lithium metaborate and lithiumbromide were evaluated and compared with the well-known reference values in the literature. Relative standard deviation (RSD) values for the major oxide measurements for standards changes between of 0.0 wt. % to 1.5 wt. %. RSD values for the trace and rare-earth-elements values were mainly lower than 10 wt. %. The results confirm that the both flux-bearing and flux-free glasses reasonably match with the world-wide inter-laboratory values for international standards samples. The combination of these two instruments can be used to conduct geochemistry of various solid earth materials.

___

  • Alomary, A. A., Belhadj, S. 2007. Determination of heavy metals Cd, Cr, Cu, Fe, Ni, Pb, Zn by ICP-OES and their speciation in Algerian Mediterranean Sea sediments after a five-stage sequential extraction procedure. Environmental Monitoring and Assessment 135, 1-3, 265-280.
  • Chen, Z., Canil, D., Longerich, H. P. 2000. Automated in situ trace element analysis of silicate materials by laser ablation inductively coupled plasma mass spectrometry. Fresenius’ Journal of Analytical Chemistry 368, 73-78.
  • Dahlquist, R. L, Knoll, J. W. 1978. Inductively coupled plasma-atomic emission spectrometry: analysis of biological materials and soils for major, trace, and ultra-trace elements. Applied Spectroscopy 32, 1-30.
  • Eggins, S. M. 2003. Laser ablation ICP-MS analysis of geological materials prepared as lithium borate glasses. Geostandards Newsletter 27, 147-162.
  • Elburg, M. A., Andersen, T., Bons, P. D., Weisheit, A., Simonsen, S. L., Smet, I. 2012. Metasomatism and metallogeny of A-type granites of the MtPainter–Mt Babbage Inliers, South Australia. Lithos 151, 83-104.
  • Fedorowich, J. S., Richards, J. P., Jain, J. C., Kerrich, R., Fan, J. 1993. A rapid method for REE and trace- element analysis using laser sampling ICP-MS on direct fusion whole-rock glasses. Chemical Geology 106(3-4), 229-249.
  • Georem database. http://georem.mpch-mainz.gwdg.de/start. asp?dataversion=current. 27 Şubat 2021.
  • Govindaraju, K. 1994. 1994 compilation of working values and sample description for 383 geostandards. Geostandards Newsletter 18, 1-158.
  • Guillong, M., Meier, D. L., Allan, M. M., Heinrich, C. A., Yardley, B. W. 2008. A Matlab-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Mineralogical Association of Canada Short Course 40, 328-333.
  • Günther, D., Quadt, A. V., Wirz, R., Cousin, H., Dietrich, V. J. 2001. Elemental analyses using laser ablation- inductively coupled plasma-mass spectrometry LA-ICP-MS of geological samples fused with Li2B4O7 and calibrated without matrix-matched standards. Microchimica Acta 136(3-4), 101-107.
  • Imai, N. 1990. Quantitative analysis of original and powdered rocks and mineral inclusions by laser ablation inductively coupled plasma mass spectrometry. Analytica Chimica Acta 235, 381-391.
  • Jarvis, I., Jarvis, K. E. 1992. Inductively coupled plasma- atomic emission spectrometry in exploration geochemistry. Journal of Geochemical Exploration 44(1-3), 139-200.
  • Jenner, G. A., Longerich, H. P., Jackson, S. E., Fryer, B. J. 1990. ICP-MS—a powerful tool for high- precision trace-element analysis in Earth sciences: Evidence from analysis of selected USGS reference samples. Chemical Geology 83(1-2), 133-148.
  • Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Enzweiler, J. 2011. Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostandards and Geoanalytical Research 35(4), 397-429.
  • Jochum, K. P., Weis, U., Schwager, B., Stoll, B., Wilson, S. A., Haug, G. H., Enzweiler, J. 2016 . Reference values following ISO guidelines for frequently requested rock reference materials. Geostandards and Geoanalytical Research 40(3), 333-350.
  • Kurosawa, M., Shima, K., Ishii, S., Sasa, K. 2006. Trace element analysis of fused whole-rock glasses by laser ablation-ICP-MS and PIXE. Geostandards and Geoanalytical Research 30(1), 17-30.
  • Liu, Y., Hu, Z., Zong, K., Gao, C., Gao, S., Xu, J., Chen, H.2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA- ICP-MS. Chinese Science Bulletin 55(15), 1535-1546.
  • Liu, Y., Hu, Z., Li, M., Gao, S. 2013. Applications of LA- ICP-MS in the elemental analyses of geological samples. Chinese Science Bulletin 58(32), 3863-3878.
  • Longerich, H. P., Jackson, S. E., Günther, D. 1996. Inter- laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry 11(9), 899-904.
  • Mendeley Database. https://data.mendeley.com/datasets/ tfxzf3v44s/draft?a=d0b2dfde-46dd-4c6b-b024- ea27310b85e1. 27 Şubat 2021.
  • Navarro, M. S., Ulbrich, H. H. G. J., Andrade, S., Janasi, V. A. 2002. Adaptation of ICP–OES routine determination techniques for the analysis of rare earth elements by chromatographic separation in geologic materials: tests with reference materials and granitic rocks. Journal of Alloys and Compounds 344(1-2), 40-45.
  • Norman, M. D., Pearson, N. J., Sharma, A., Griffin, W. L. 1996. Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: instrumental operating conditions and calibration values of NIST glasses. Geostandards Newsletter 20(2), 247-261.
  • Pearce, J. A., Harris, N. B., Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25(4), 956-983.
  • Perkin Elmer Syngistix Software. https://www. perkinelmer.com/ lab-solutions/resources/ docs/PRD_Syngistix-Atomic-Spec- Software- Family_011968_01.pdf . 27 Şubat 2021.
  • Petrelli, M., Perugini, D., Alagna, K. E., Poli, G., Peccerillo, A. 2008. Spatially resolved and bulk trace element analysis by laser ablation-inductively coupled plasma-mass spectrometry LA-ICP-MS . co di Mineralogia 77(3), 3-21.
  • Potts, P. J., Webb, P. C. 1992. X-ray fluorescence spectrometry. Journal of Geochemical Exploration 44(1-3), 251-296.
  • Shao, F., Niu, Y., Liu, Y., Chen, S., Kong, J., Duan, M. 2017. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications. Lithos 282, 33-44.
  • Tamura, A., Akizawa, N., Otsuka, R., Kanayama, K., Python, M., Morishita, T., Arai, S. 2015. Measurement of whole-rock trace-element composition by flux- free fused glass and LA-ICP-MS: evaluation of simple and rapid routine work. Geochemical Journal 49(3), 243-258.
  • Wilson, S. 2017. USGS microanalytical reference materials MRMS development. Microscopy and Microanalysis 23, 492-493.