Sıcak Stresi ve Termotolerans: Sığırlarda Moleküler Çalışmalar

Küresel iklim değişikliği riski insan nüfusu, çevre kirliliği ve atmosferdeki sera gazları oranlarında görülen artış nedeniyle gün geçtikçe artmaktadır. Yüzey sıcaklığında 2100’lerin sonunda yaklaşık 1,8 ile 4,8°C aralığında artış beklenmektedir. Ilıman iklimlerde yaşamakta olan sığırlar gelecekte artan sıcaklıklarla ve dolayısıyla da sıcak stresi ile karşı karşıya kalacaklardır. Sıcak etkisi ile ortaya çıkan stres yanıtları aynı zamanda verim kaybıyla sonuçlanmaktadır. Yüksek sıcaklık ve nem seviyeleri verim özelliklerini olumsuz yönde etkilemektedir. Tüm bu gerekçeler sıcak stresi ve termotolerans ile ilişkili moleküler çalışmaların gerekliliğini gözler önüne sermektedir. Bilim insanları genom boyu ilişkilendirme çalışması (GWAS), gen ifadesi, polimorfizm ve mikroRNA çalışmaları gibi birçok farklı yaklaşım ile sıcak stresini ve termotoleransın moleküler mekanizmalarını araştırmışlardır. Bu derlemede sıcak stresi ve zararlı etkileri tanımlanmış, sığırlar üzerinde yapılmış moleküler çalışmalar ise tek bir yayın altında toplanmaya çalışılmıştır.

___

  • 1. Adamowicz T, Pers E, Lechniak D (2005): A New SNP in the 3’-UTR of the hsp 70-1 Gene in Bos taurus and Bos indicus. Biochemical Genetics 43 (11-12): 623-627.
  • 2. Aggarwal P, Vyas S, Thornton P, Campbell BM (2019): How much does climate change add to the challenge of feeding the planet this century? Environ Res Lett 14: 043001.
  • 3. Ahmed BMS, Younas U, Asar TO, Dikmen S, Hansen PJ, Dahl GE (2017): Cows exposed to heat stress during fetal life exhibit improved thermal tolerance. Journal of Animal Science 95: 3497-3503.
  • 4. Archana PR, Aleena J, Pragna P, Vidya MK, Abdul Niyas PA, Bagath M, Krishnan G, Manimaran A, Beena V, Kurien EK, Sejian V, Bhatta R (2017): Role of Heat Shock Proteins in Livestock Adaptation to Heat Stress. J Dairy Vet Anim Res 5(1): 00127. DOI: 10.15406/jdvar.2017.05.00127
  • 5. Badri TM, Chen KL, Alsiddik MA, Li L, Cai Y, Wang GL (2018): Genetic polymorphism in Hsp90AA1 gene is associated with the thermotolerance in Chinese Holstein cows. Cell Stress and Chaperones 23: 639-651.
  • 6. Bahbahani H, Clifford H, Wragg D, Mbole-Kariuki MN, Van Tassel C, Sonstegard T, Woolhouse M, Hanotte O (2015): Signatures of positive selection in East African Shorthorn Zebu: A genome-wide single nucleotide polymorphism analysis. Scientific Reports 5: 11729.
  • 7. Basiricò L, Morera P, Primi V, Lacetera N, Nardone A, Bernabucci U (2011): Cellular thermotolerance is associated with heat shock protein 70.1 genetic polymorphisms in Holstein lactating cows. Cell Stress and Chaperones 16: 441- 448.
  • 8. Bharati J, Dangi SS, Chouhan VS, Mishra SR, Bharti MK, Verma V, Shankar O, Yadav VP, Das K, Paul A, Bag S, Maurya VP, Singh G, Kumar P, Sarkar M (2017): Expression dynamics of HSP70 during chronic heat stress in Tharparkar cattle. International Journal of Biometeorology 61 (6): 1017-1027.
  • 9. Bhat S, Kumar P, Kashyap N, Deshmukh B, Dige MS, Bhushan B, Chauhan A, Kumar A, Singh G (2016): Effect of heat shock protein 70 polymorphism on thermotolerance in Tharparkar cattle. Veterinary World 9 (2): 113-117.
  • 10. Cai Y, Liu Q, Xing G, Zhou L, Yang Y, Zhang L, Li J, Wang G (2005): Polymorphism of the Promoter Region of Hsp70 Gene and Its Relationship with the Expression of HSP70mRNA, HSF1mRNA, Bcl-2mrna and Bax-AMrna in Lymphocytes in Peripheral Blood of Heat Shocked Dairy Cows. Asian- Australasian Journal of Animal Sciences 18 (5): 734-740.
  • 11. Casasús I, Rogošić J, Rosati A, Štoković I, Gabiña D (2012): Animal farming and environmental interactions in the Mediterrenean region, Wageningen Academic Publishers, The Netherlands, pp. 77; 232.
  • 12. Chang M, He L, Cai L (2018): An Overview of Genome- Wide Association Studies. In: Huang T (eds) Computational Systems Biology. Methods in Molecular Biology, vol 1754. Humana Press, New York, USA.
  • 13. Charoensook R, Gatphayak K, Sharifi AR, Chaisongkram C, Brenig B, Knorr C (2012): Polymorphisms in the bovine HSP90AB1 gene are associated with heat tolerance in Thai indigenous cattle. Tropical Animal Health and Production 44: 921–928.
  • 14. Cheng Y, Liu S, Zhang Y, Su D, Wang G, Lv C, Zhang Y, Yu H, Hao L, Zhang J (2016): The effect of heat stress on bull sperm quality and related HSPs expression. Animal Biology 66: 321-333.
  • 15. Collier RJ, Stiening CM, Pollard BC, VanBaale MJ, Baumgard LH, Gentry PC, Coussens PM (2006): Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle. Journal of Animal Science 84 (E Suppl.): E1-E13.
  • 16. Collier RJ, Collier JL, Rhoads RP, Baumgard LH (2008): Invited review: Genes involved in the bovine heat stress response. Journal of Dairy Science 91: 445-454.
  • 17. Conway D, Nicholls RJ, Brown S, Tebboth MGL, Adger WN, Ahmad B, Biemans H, Crick F, Lutz AF, De Campos RS, Said M, Singh C, Zaroug MAH, Ludi E, New M, Wester P (2019): The need for bottom-up assessments of climate risks and adaptation in climate-sensitive regions. Nat. Clim. Chang. 9: 503–511. doi:10.1038/s41558-019-0502-0.
  • 18. Çıldır ÖŞ, Özmen Ö (2018): Çiftlik Hayvanlarında CRISPR/Cas9 Uygulamaları. Selcuk J Agr Food Sci 32 (3): 559-566. doi: 10.15316/SJAFS.2018.137.
  • 19. Das R, Sailo L, Verma N, Bharti P, Saikia J, Imtiwati, Kumar R (2016): Impact of heat stress on health and performance of dairy animals: A review. Veterinary World, 9 (3): 260-268.
  • 20. Deb R, Sajjanar B, Singh U, Kumar S, Brahmane MP, Singh R, Sengar G, Sharma A (2013): Promoter variants at AP2 box region of Hsp70.1 affect thermal stress response and milk production traits in Frieswal cross bred cattle. Gene 532: 230- 235.
  • 21. Deb R, Sajjanar B, Singh U, Alex R, Raja TV, Alyethodi RR, Kumar S, Sengar G, Sharma S, Singh R, Prakash B (2015): Understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in crossbred bulls. International Journal of Biometeorology 59 (12): 1783-1789.
  • 22. Dikmen S, Cole JB, Null DJ, Hansen PJ (2013): Genome-wide association mapping for identification of quantitative trait loci for rectal temperature during heat stress in Holstein cattle. PLoS ONE 8 (7): e69202.
  • 23. Dikmen S, Wang X-z, Ortega MS, Cole JB, Null DJ, Hansen PJ (2015): Single nucleotide polymorphisms associated with thermoregulation in lactating dairy cows exposed to heat stress. Journal of Animal Breeding and Genetics 132: 409-419.
  • 24. Fang W, He J, Huang J, Ju Z, Wang C, Qi C, Li J, Li R, Zhong J, Li Q (2014): Study on genetic variations of PPARa gene and its effects on thermal tolerance in Chinese Holstein. Molecular Biology Reports 41: 1273–1278.
  • 25. Favatier F, Bornman L, Hightower LE, Günther E, Polla BS (1997): Variation in hsp gene expression and Hsp polymorphism: do they contribute to differential disease susceptibility and stress tolerance? Cell Stress & Chaperones 2 (3): 141-155.
  • 26. Hammami H, Vandenplas J, Vanrobays ML, Rekik B, Bastin C, Gengler N (2015): Genetic analysis of heat stress effects on yield traits, udder health, and fatty acids of Walloon Holstein cows. Journal of Dairy Science. 98: 4956-4968.
  • 27. Hayes BJ, Bowman PJ, Chamberlain AJ, Savin K, van Tassell CP, Sonstegard TS, Goddard ME (2009): A validated genome wide association study to breed cattle adapted to an environment altered by climate change. PLoS ONE 4 (8): e6676.
  • 28. Horowitz M (2001): Heat acclimation: phenotypic plasticity and cues to the underlying molecular mechanisms. Journal of Thermal Biology 26: 357–363.
  • 29. Houpt KA (2008): Dukes Veteriner Fizyoloji. p: 925-935. In: Davranış Fizyolojisi, Edit.: Reece WO, Yıldız S, Onikinci Baskı, Medipres Matbaacılık Ltd. Şti, ISBN: 978-975-6676-36-3, Malatya, Türkiye.
  • 30. Howard JT, Kachman SD, Snelling WM, Pollak EJ, Ciobanu DC, Kuehn LA, Spangler ML (2013): Beef cattle body temperature during climatic stress: a genome-wide association study. International Journal of Biometeorology 58 (7): 1665-1672.
  • 31. Hu Y, Cai MC, Wang L, Zhang TH, Luo ZG, Zhang GW, Zuo FY (2018): MiR-1246 is upregulated and regulates lung cell apoptosis during heat stress in feedlot cattle. Cell Stress and Chaperones 23: 1219. https://doi.org/10.1007/s12192-018- 0927-9.
  • 32. Islam MM, Barman A, Kundu GK, Kabir MA, Paul B (2019): Vulnerability of inland and coastal aquaculture to climate change: Evidence from a developing country. Aquaculture and Fisheries 4: 183-189.
  • 33. IPCC (2018): Summary for Policymakers. In: Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (eds.)]. World Meteorological Organization, Geneva, Switzerland, 32 pp.
  • 34. Kadokawa H, Sakatani M, Hansen PJ (2012): Perspectives on improvement of reproduction in cattle during heat stress in a future Japan. Animal Science Journal 83 (6): 439-45.
  • 35. Kashyap N, Kumar P, Deshmukh B, Bhat S, Kumar A, Chauhan A, Bhushan B, Singh G, Sharma D (2015): Association of ATP1A1 gene polymorphism with thermo tolerance in Tharparkar and Vrindavani cattle. Veterinary World 8 (7): 892-897.
  • 36. Kerekoppa RP, Rao A, Basavaraju M, Geetha GR, Krishnamurthy L, Rao TVLN, Das DN, Mukund K (2015): Molecular characterization of the HSPA1A gene by single-strand conformation polymorphism and sequence analysis in Holstein-Fresian crossbred and Deoni cattle raised in India. Turkish Journal of Veterinary and Animal Sciences 39: 128-133.
  • 37. Koyuncu M (2017): Küresel iklim değişikliği ve hayvancılık. Selcuk Journal of Agriculture and Food Sciences 31 (2): 98- 106.
  • 38. Kumar R, Gupta ID, Verma A, Singh SV, Verma N, Vineeth MR, Magotra A, Das R (2016): Novel SNP identification in exon 3 of HSP90AA1 gene and their association with heat tolerance traits in Karan Fries (Bos taurus × Bos indicus) cows under tropical climatic condition. Tropical Animal Health and Production 48 (4): 735-740.
  • 39. Kumar R, Gupta ID, Verma A, Kumari R, Verma N (2017): Molecular characterisation and SNP identification in HSPB6 gene in Karan Fries (Bos Taurus x Bos indicus) cattle. Tropical Animal Health and Production 49: 1059-1063.
  • 40. Li L, Sun Y, Wu J, Li X, Luo M, Wang G (2015): The global effect of heat on gene expression in cultured bovine mammary epithelial cells. Cell Stress and Chaperones 20: 381-389.
  • 41. Li L, Wu J, Luo M, Sun Y, Wang G (2016): The effect of heat stress on gene expression, synthesis of steroids, and apoptosis in bovine granulosa cells. Cell Stress and Chaperones 21: 467-475.
  • 42. Li Q, Ju Z, Huang J, Li J, Hou M, Wang C, Zhong J (2011a): Two Novel SNPs in HSF1 Gene Are Associated with Thermal Tolerance Traits in Chinese Holstein Cattle. DNA and Cell Biology 30 (4): 247-254.
  • 43. Li Q, Han J, Du F, Ju Z, Huang J, Wang J, Li R, Wang C, Zhong J (2011b): Novel SNPs in HSP70A1A gene and the association of polymorphisms with thermo tolerance traits and tissue specific expression in Chinese Holstein cattle. Molecular Biology Reports 38: 2657-2663.
  • 44. Liu YX, Zhou X, Li DQ, Cui QW, Wang GL (2010): Association of ATP1A1 gene polymorphism with heat tolerance traits in dairy cattle. Genetics and Molecular Research 9 (2): 891-896.
  • 45. Liu YX, Li D, Li H, Zhou X, Wang G (2011): A novel SNP of the ATP1A1 gene is associated with heat tolerance traits in dairy cows. Molecular Biology Reports 38: 83-88.
  • 46. Macciotta NPP, Biffani S, Bernabucci U, Lacetera N, Vitali A, Ajmone-Marsan P, Nardone A (2017): Derivation and genome- wide association study of a principal component-based measure of heat tolerance in dairy cattle. Journal of Dairy Science 100: 1-15.
  • 47. Maibam U, Hooda OK, Sharma PS, Mohanty AK, Singh SV, Upadhyay RC (2017): Expression of HSP70 genes in skin of zebu (Tharparkar) and crossbred (Karan Fries) cattle during different seasons under tropical climatic conditions. Journal of Thermal Biology 63: 58-64.
  • 48. Maróti-Agóts Á, Bodó I, Jávorka L, Gyurmán A, Solymosi N, Zenke P, Skogseth M, Zöldág L (2011): Possible genetic sign of heat stress adaptation in Hungarian Grey Bos taurus breed. Acta Biologica Hungarica 62 (1): 65-72.
  • 49. Mehla K, Magotra A, Choudhary J, Singh AK, Mohanty AK, Upadhyay RC, Srinivasan S, Gupta P, Choudhary N, Antony B, Khan F (2014): Genome-wide analysis of the heat stress response in Zebu (Sahival) cattle. Gene 533: 500-507.
  • 50. Misztal I (2017): Breedıng and Genetics Symposium: Resilience and lessons from studies in genetics of heat stress. Journal of Animal Science 95 (4): 1780-1787.
  • 51. Mora C, Spirandelli D, Franklin EC, Lynham J, Kantar MB, Miles W, Smith CZ, Freel K, Moy J, Louis LV, Barba EW, Bettinger K, Frazier AG, Colburn IX JF, Hanasaki N, Hawkins E, Hirabayashi Y, Knorr, Little CM, Emanuel K, Sheffield J, Patz JA, Hunter CL (2018): Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nature Clim Change 8: 1062–1071. doi:10.1038/s41558-018-0315-6.
  • 52. Naumann G, Alfieri L, Wyser K, Mentaschi L, Betts RA, Carrao H, Spinoni J, Vogt J, Feyen L (2018): Global changes in drought conditions under different levels of warming. Geophysical Research Letters, 45. https://doi.org/10.1002/ 2017GL076521.
  • 53. Olson TA, Lucena C, Chase CCJr, Hammond AC (2003): Evidence of a major gene influencing hair length and heat tolerance in Bos taurus cattle. Journal of Animal Science 81 (1): 80-90.
  • 54. OMIA-Online Mendelian Inheritance In Animals (2019): OMIA 001372-9913 : Slick hair in Bos taurus. [Erişim: https://omia.org/ OMIA001372/9913/], [Erişim tarihi: 20.08.2019].
  • 55. Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004): Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environmental Change 14 (1): 53-67.
  • 56. Polsky L, von Keyserlingk MAG (2017): Invited review: Effects of heat stress on dairy cattle welfare. Journal of Dairy Science 100: 8645-8657.
  • 57. Pragna P, Archana PR, Aleena J, Sejian V, Krishnan G, Bagath M, Manimaran A, Beena V, Kurien EK, Varma G, Bhatta R (2016): Heat stress and dairy cow: Impact on both milk yield and composition. International Journal of Dairy Science 12 (1): 1-11.
  • 58. Renaudeau D, Collin A, Yahav S, de Basilio, V, Gourdine JL, Collier RJ (2012): Adaptation to hot climate and strategies to alleviate heat stress in livestock. Animal 6 (5): 707-728.
  • 59. Robertshaw D (2008): Dukes Veteriner Fizyoloji. p: 935-945. In: Termoregülasyon ve Termal Çevre, Edit.: Reece WO, Yıldız S, Onikinci Baskı, Medipres Matbaacılık Ltd. Şti, ISBN: 978-975- 6676-36-3, Malatya, Türkiye.
  • 60. Rosenkrans JrC, Banks A, Reiter S, Looper M (2010): Calving traits of crossbred Brahman cows are associated with Heat Shock Protein 70 genetic polymorphisms. Animal Reproduction Science 119: 178-182.
  • 61. Sajjanar B, Deb R, Singh U, Kumar S, Brahmane M, Nirmale A, Bal SK, Minhas PS (2015): Identification of SNP in HSP90AB1 and its Association with the Relative Thermotolerance and Milk Production Traits in Indian Dairy Cattle. Animal Biotechnology 26 (1): 45-50.
  • 62. Sailo L, Gupta ID, Verma A, Singh A, Chaudhari MV, Das R, Upadhyay RC, Goswami J(2015): Single Nucleotide Polymorphisms in HSP90AB1 Gene and its association with thermotolerance in Jersey crossbred cows. Animal Science Reporter 9 (2): 43-49.
  • 63. Sejian V, Naqvi SMK, Ezeji T, Lakritz J, Lal R (2012): Environmental Stress and Amelioration in Livestock Production. Springer- Verlag Berlin Heidelberg, ISBN: 978-3-642-29205-7, p: 413- 468.
  • 64. Sejian V, Bhatta R, Gaughan J, Malik PK, Naqvi, SMK, Lal R (2017): Sheep Production Adapting to Climate Change. Springer Nature Singapore Pte Ltd, Singapore, p: 3; 118.
  • 65. Sengar GS, Deb R, Singh U, Raja TV, Kant R, Sajjanar B, Alex R, Alyethodi RR, Kumar A, Kumar S, Singh R, Jakhesara SJ, Joshi CG (2018a): Differential expression of microRNAs associated with thermal stress in Frieswal (Bos taurus x Bos indicus) crossbred dairy cattle. Cell Stress Chaperones 23 (1): 155-170.
  • 66. Sengar GS, Deb R, Singh U, Junghare V, Hazra S, Raja TV, Alex R, Kumar A, Alyethodi RR, Kant R, Jakshara S, Joshi CG (2018b): Identification of differentially expressed microRNAs in Sahiwal (Bos indicus) breed of cattle during thermal stress. Cell Stress and Chaperones https://doi.org/10.1007/s12192- 018-0911-4. doi: 10.1007/s12192-018-0911-4.
  • 67. Shao-Yao Y, Donald CC, Shi-Lung L (2018): MicroRNA Protocols. p:1-26. In: The MicroRNA, Edit.: Shao-Yao Y, Third Edition, Humana Press, ISBN: 978-1-4939-7601-0, New York, USA.
  • 68. Shergojry SA (2011): Molecular Genetic Characterization of HSP90 gene in Deoni (Bos indicus) cattle. Master Thesis, National Dairy Research Institute, Karnal (Deemed University), Bangalore, India.
  • 69. Srikanth K, Lee E, Kwan A, Lim Y, Lee J, Jang G, Chung H (2017): Transcriptome analysis and identification of significantly differentially expressed genes in Holstein calves subjected to severe thermal stress. International Journal of Biometeorology 61 (11): 1993-2008.
  • 70. Suqueli Garcia MF, Castellote MA, Feingold SE, Corva PM (2017): Characterization of a deletion in the Hsp70 cluster in the bovine reference genome. Animal Genetics 48 (4): 377- 385.
  • 71. Thorat BN, Thombre BM, Narwade SG (2016): Studies on effect of climatic parameters on monthly lactation milk yields in Deoni cattle of Maharashtra, India. Indian Journal of Animal Research 50 (1): 31-34.
  • 72. Trifković J, Jovanović L, Đurić M, Stevanović-Đorđević S, Milanović S, Lazarević M, Sladojević Z, Kirovski D (2018): Influence of different seasons during late gestation on Holstein cows’ colostrum and postnatal adaptive capability of their calves. International Journal of Biometeorology 62 (6): 1097-1108.
  • 73. Uslucan B (2017): Siyah alaca sığırlarda süt ve döl verim özellikleri ile bazı davranış parametreleri üzerine etkili çevre faktörlerinin belirlenmesi. Doktora Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • 74. Üçeş H (2005): Sıcaklık stresinin döl verim kriterleri üzerine etkisi ve süt verimi ile ilişkileri açısından sürü kayıtlarının değerlendirilmesi üzerine bir çalışma. Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • 75. Verma N, Gupta I D, Verma A, Kumar R, Das R, Vineeth MR (2016): Novel SNPs in HSPB8 gene and their association with heat tolerance traits in Sahiwal indigenous cattle. Tropical Animal Health and Production 48 (1): 175-180.
  • 76. Wang Y, Huang J, Xia P, He J, Wang C, Ju Z, Li J, Li R, Zhong J, Li Q (2013): Genetic variations of HSBP1 gene and its effect on thermal performance traits in Chinese Holstein cattle. Molecular Biology Reports 40: 3877-3882.
  • 77. Wang Z, Wang G, Huang J, Li Q, Wang C, Zhong J (2011): Novel SNPs in the ATP1B2 gene and their associations with milk yield, milk composition and heat-resistance traits in Chinese Holstein cows. Molecular Biology Reports 38: 1749- 1755.
  • 78. Xiong Q, Chai J, Xiong H, Li W, Huang T, Liu Y, Suo X, Zhang N, Li X, Jiang S, Chen M (2013): Association analysis of HSP70A1A haplotypes with heat tolerance in Chinese Holstein cattle. Cell Stress and Chaperones 18 (6): 711-718.