Molecular Mechanisms Affecting Development of Animal Fibers and Some Studies on Goats

Molecular Mechanisms Affecting Development of Animal Fibers and Some Studies on Goats

Natural fibers are of two types as vegetable and animal origin. Animal fibers have contributed to the development of the economic structures of the countries and the continuation of their traditions since ancient times and continue to do so. Various studies have shown that the properties of the fiber produced by the hair follicle are of great importance in determining fiber quality and quantity. Hair follicles have been developed in an environment where various molecular signals are effective. In this context, the investigation of molecular mechanisms affecting hair follicle development has come into prominence and it is seen that it has become the focus of studies. In this review, it has been tried to explain the importance of animal fibers and the molecular mechanisms affecting hair follicle morphogenesis and cycle by providing some examples from the studies on two goat breeds, Angora goat and cashmere goat, which are valuable in terms of animal fiber, leading to provide a preliminary information to the studies which has become the focus of today.

___

  • Ahlawat, S., Arora, R., Sharma, R., Sharma, U., Kaur, M., Kumar, A., Singh, K. V., Singh, M. K., and Vijh, R. K. (2020). Skin transcriptome profiling of Changthangi goats highlights the relevance of genes involved in Pashmina production. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-63023-6.
  • Andl, T., Reddy, S. T., Gaddapara, T., & Millar, S. E. (2002). WNT signals are required for the initiation of hair follicle development. Developmental Cell, Vol. 2, 643–653 http://doi.org/10.1016S1534-5807(02)00167-3.
  • Arzik, Y., Kizilaslan, M., Behrem, S., White, S. N., Piel, L. M., & Cinar, M. U. (2023a). Genome-Wide Scan of Wool Production Traits in Akkaraman Sheep. Genes, 14(3), 713. https://doi.org/10.3390/genes14030713 .
  • Arzik, Y., Behrem, S., & Kizilaslan, M. (2023b). Economic evaluation of mohair production in Ankara province. Black Sea Journal of Agriculture, 6(1), 42-46.
  • Botchkarev, V. A., & Paus, R. (2003). Molecular Biology of Hair Morphogenesis: Development and Cycling. J. Exp. Zool. (Mol. Dev. Evol.), 298, 164–180. https://doi.org/10.1002/jez.b.00033. Botchkarev, V. A., Botchkareva, N. v, Roth, W., Nakamura, M., Chen, L.-H., Herzog, W., Lindner, G., McMahon, J. A., Peters, C., Lauster, R., McMahon, A. P., & Paus, R. (1999). Noggin is a mesenchymally derived stimulator of hair-follicle induction. In articles 158 NATURE CELL BIOLOGY (Vol. 1). http://doi.org/10.1038/11078. Chiang, C., Swan, R.Z., Grachtchouk, M., Bolinger, M., Litingtung, Y., Robertson, E.K., Cooper, M.K., Gaffield, W., Westphal, H., Beachy, P.A., et al. (1999). Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev. Biol. 1999, 205, 1–9. http://doi.org/10.1006/dbio.1998.9103.
  • Chuma, M., Endo-Umeda, K., Shimba, S., Yamada, S., Makishima, M. (2012). Hairless modulates ligand-dependent activation of the vitamin D receptor-retinoid X receptor heterodimer. Biol Pharm Bull. 2012; 35(4): 582–7. http://doi.org/10.1248/bpb.35.582.
  • Cinar-Kul, B., Bilgen, N., Biskin, M., Akkurt, M.Y., Cildir, O. S., Ozmen, O., Kul, O. (2022). Seasonal Gene Expression Profile Responsible For Hair Follicle Development In Angora Goats Research Square 1-17, https://doi.org/10.21203/rs.3.rs-1445450/v2. Cotsarelis, G. and Botchkarev, V.A. (2008). Biology of hair follicles. In Fitzpatrick’s Dermatology in General Medicine 9th ed. K. Wollf, L.A. Goldsmith, S.I. Katz, B.A. Gilchrest, A.S. Paller, and D.J. Leffell, eds. (New York:McGraw Hill), pp. 739–749.
  • Crowe, R., Henrique, D., Horowicz, D., and Niswander, L. (1998). A new role for Notch and Delta in cell fate decisions patterning the feather array. Development 125, 767–775. http://doi.org/10.1242/dev.125.4.767.
  • Dellal, G. (2021). Çiftlik Hayvanlarında Lif Üretimi. ISBN:978-625-00-9588-1. Matsa Basımevi Ankara, 2021.
  • Dellal, G., Elicin, A., Tuncel, E., Erdogan, Z., Taskın, T., Cengiz, F., Ertugrul, M., Soylemezoglu, F., Dag, B., Ozder, M., Pehlivan, E., Tuncer, S.S., Kor, A., Aytac, M., Koyuncu, M. (2010). Türkiye’de Hayvansal Lif Üretiminin Durumu ve Geleceği. Türkiye Ziraat Mühendisliği VII. Teknik Kongresi, 11-15.01.2010.
  • Diao, X., Yao, L., Wang, X., Li, S., Qin, J., Yang, L., He, L., & Zhang, W. (2023). Hair Follicle Development and Cashmere Traits in Albas Goat Kids. Animals, 13(4). https://doi.org/10.3390/ani13040617. Durmowicz, M.C., Cui, C.Y., Schlessinger, D. (2002). The EDA gene is a target of, but does not regulate Wnt signaling. Gene. 285: 203-211. https://doi.org/10.1016/S0378-1119(02)00407-9. Favier, B., Fliniaux, I., Thelu, J., Viallet, J.P., Demarcher, M, Jahoda, C., Dhouailly, D. (2000). Localization of members of the notch system and the differentiation of vibrissa hair follicles, receptors, ligands, and fringe modulators. Dev Dyn 218:426–437. https://doi.org/10.1002/1097-0177(200007)218:3<426::AID-DVDY1004>3.0.CO;2-4.
  • Foitzik, K., Spexard, T., Nakamura, M., Halsner, U., Paus, R. (2005). Towards dissecting the pathogenesis of retinoid-induced hair loss: alltrans retinoic acid induces premature hair follicle regression (catagen) by upregulation of transforming growth factor-β2 in the dermal papilla. J Invest Dermatol. 2005 Jun; 124(6): 1119–26.
  • Fu, X., Zhao, B., Tian, K., Wu, Y., Suo, L., Ba, G., Ciren, D., De, J., Awang, C., Gun, S., & Yang, B. (2020). Integrated analysis of lncRNA and mRNA reveals novel insights into cashmere fineness in Tibetan cashmere goats. PeerJ, 8. https://doi.org/10.7717/peerj.10217.
  • Gao, Y., Wang, X., Yan, H., Zeng, J., Ma, S., Niu, Y., Zhou, G., Jiang, Y., & Chen, Y. (2016). Comparative transcriptome analysis of fetal skin reveals key genes related to hair follicle morphogenesis in cashmere goats. PLoS ONE, 11(3). https://doi.org/10.1371/journal.pone.0151118.
  • Gul, S., Arzik, Y., Kizilaslan, M., Behrem, S., & Keskin, M. (2023). Heritability and environmental influence on pre-weaning traits in Kilis goats. Tropical Animal Health and Production, 55(2), 85. https://doi.org/10.1007/s11250-023-03509-3. Han, W., Li, X., Wang, L., Wang, H., Yang, K., Wang, Z., Wang, R., Su, R., Liu, Z., Zhao, Y., Zhang, Y., & Li, J. (2018). Expression of fox-related genes in the skin follicles of Inner Mongolia cashmere goat. Asian-Australasian Journal of Animal Sciences, 31(3), 316–326. https://doi.org/10.5713/ajas.17.0115 Hardy, M.H. (1992). The secret life of the hair follicle. Trends Genet 8:55±60, 1992.
  • Hayward, P., Brennan, K., Sanders, P., Balayo, T., DasGupta, R., Perrimon, N., & Martinez Arias, A. (2005). Notch modulates Wnt signalling by associating with Armadillo /β-catenin and regulating its transcriptional activity. Development, 132(8), 1819–1830. https://doi.org/10.1242/dev.01724.
  • Hébert, J.M., Rosenquist, T., Götz, J., Martin, G.R. (1994). FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell. 1994 Sep; 78(6): 1017– 25.
  • Huang, S., Zhu, X., Liu, Y., Tao, Y., Feng, G., He, L., Guo, X., & Ma, G. (2012). Wls Is Expressed in the Epidermis and Regulates Embryonic Hair Follicle Induction in Mice. PLoS ONE, 7(9). https://doi.org/10.1371/journal.pone.0045904. Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G., & Birchmeier, W. (2001). Β-catenin Controls Hair Follicle Morphogenesis and Stem Cell Differentiation in the Skin. Cell (Vol. 105, 533–545).
  • Hui, T., Zheng, Y., Sheng, S., Guo, S., Guo, D., Guo, S., Yue, C., Sun, J., Cai, W., Bai, Z., Wang, Y., Zhang, X., Wang, Z., and Bai, W. (2020). Discovery and comprehensive analysis of miRNAs from liaoning cashmere goat skin during anagen. International Journal of Agriculture and Biology, 24(3), 575–583. https://doi.org/10.17957/IJAB/15.1474 .
  • Houschyar, K. S., Borrelli, M. R., Tapking, C., Popp, D., Puladi, B., Ooms, M., Chelliah, M. P., Rein, S., Pförringer, D., Thor, D., Reumuth, G., Wallner, C., Branski, L. K., Siemers, F., Grieb, G., Lehnhardt, M., Yazdi, A. S., Maan, Z. N., & Duscher, D. (2020). Molecular Mechanisms of Hair Growth and Regeneration: Current Understanding and Novel Paradigms. In Dermatology (Vol. 236, Issue 4, pp. 271–280). S. Karger AG. https://doi.org/10.1159/000506155.
  • Işik, R., Fidan, A., Soysal, M. I., & Ünal, E. Ö. (2021). Identification of novel genetic variants for KAP1.1, KAP1.3 and K33 genes in some of indigenous goat breeds of Turkey. Turkish Journal of Veterinary and Animal Sciences, 45(5), 805–813. https://doi.org/10.3906/VET-2101-35. Jamora, C., Lee, P., Kocieniewski, P., Azhar, M., Hosokawa, R., Chai, Y., & Fuchs, E. (2005). A signaling pathway involving TGF-β2 and snail in hair follicle morphogenesis. PLoS Biology, 3(1). https://doi.org/10.1371/journal.pbio.0030011. Jin, M., Lu, J., Fei, X., Lu, Z., Quan, K., Liu, Y., Chu, M., Di, R., Wang, H., & Wei, C. (2020). Genetic signatures of selection for cashmere traits in Chinese goats. Animals, 10(10), 1–13. https://doi.org/10.3390/ani10101905. Kopan, R., Weintraub, H. (1993). Mouse notch: expression in hair follicles correlates with cell fate determination. J Cell Biol 121:631–641 https://doi.org/10.1083/jcb.121.3.631.
  • Laurikkala, J.; Pispa, J.; Jung, H.S.; Nieminen, P.; Mikkola, M.; Wang, X.; Saarialho-Kere, U.; Galceran, J.; Grosschedl, R.; Thesleff, I. Regulation of hair follicle development by the TNF signal ectodysplasin and its receptor Edar. Development 2002, 129, 2541–2553.
  • Li, X., Liu, Z., Ye, S., Liu, Y., Chen, Q., Guan, W., Pu, Y., Jiang, L., He, X., Ma, Y., & Zhao, Q. (2021). Integrated analysis of lncrna and mrna reveals novel insights into wool bending in zhongwei goat. Animals, 11(11). https://doi.org/10.3390/ani11113326 Li, G. Q., Ji, Y. C., and Li, Y. (2004). Molecular mechanism of hair follicle morphogenesis. Foreign Med. Dermatol. Venereol. 30, 38–40.
  • Lin, M.H., Leimester, C., Gessler, M., Kopan, R. (2000). Activation of Notch pathway in the hair cortex leads to aberrant differentiation of adjacent hair shaft layers. Development. 127:2421-2432. http://doi.org/10.1242/dev.127.11.2421.
  • Liu, Z., Liu, Z., Mu, Q., Zhao, M., Cai, T., Xie, Y., Zhao, C., Qin, Q., Zhang, C., Xu, X., Lan, M., Zhang, Y., Su, R., Wang, Z., Wang, R., Wang, Z., Li, J. and Zhao, Y. (2022). Identification of key pathways and genes that regulate cashmere development in cashmere goats mediated by exogenous melatonin. Front. Vet. Sci. 9:993773 http://doi.org/10.3389/fvets.2022.993773.
  • Liu, Z. H., Xiao, H. M., Li, H. P., Zhao, Y. H., Lai, S. Y., Yu, X. L., et al. (2012). Identification of conserved and novel microRNAs in cashmere goat skin by deep sequencing[J]. PLoS One 7:e50001. http://doi.org/10.1371/journal.pone.0050001.
  • Ma, T., Li, J. Y., Li, J. P., Wu, S. F., Xiang, B., Jiang, H. Z., et al. (2021). Expression of miRNA-203 and its target gene in hair follicle cycle development of Cashmere goat[J]. Cell Cycle 20, 204–210. http://doi.org/10.1080/15384101.2020.1867789. McMahon, A. P., Ingham, P. W., and Tabin, C. J. (2003). Developmental roses and clinical significance of hedgehog signaling. Curr. Top. Dev. Biol. 53, 1–114. http://doi.org/10.1016/s0070-2153(03)53002-2.
  • Mecklenburg, L., Nakamura, M., Paus, R., Mecklenburg, L., & Sundberg, J. P. (2001). The nude mouse skin phenotype: The role of Foxn1 in hair follicle development and cycling. Experimental and Molecular Pathology, 71(2), 171–178. https://doi.org/10.1006/exmp.2001.2386. Millar, S. E. (2002). Molecular mechanisms regulating hair follicle development. In Journal of Investigative Dermatology (Vol. 118, Issue 2, pp. 216–225). Blackwell Publishing Inc. https://doi.org/10.1046/j.0022-202x.2001.01670.x.
  • Nixon, A. J., Betteridge, K., & Welch^, R. A. S. (1991). Seasonal hair follicle activity and fibre growth in some New Zealand Cashmere-bearing goats (Capra hircus). In J. Zool (Vol. 224).
  • Nguyen, B. C., Lefort, K., Mandinova, A., Antonini, D., Devgan, V., Gatta, G. della, Koster, M. I., Zhang, Z., Wang, J., di Vignano, A. T., Kitajewski, J., Chiorino, G., Roop, D. R., Missero, C., & Dotto, G. P. (2006). Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes and Development, 20(8), 1028–1042. https://doi.org/10.1101/gad.1406006. Oh, J.W., Kloepper, J., Langan, E.A., Kim, Y., Yeo, J., Kim, M.J., et al. (2016). A guide to studying human hair follicle cycling in vivo. J Invest Dermatol. 2016 Jan; 136(1): 34–44.
  • Ohnemus, U., Uenalan, M., Conrad, F., Handjiski, B., Mecklenburg, L., Nakamura, M., Inzunza, J., Gustafsson, J. Å., & Paus, R. (2005). Hair cycle control by estrogens: Catagen induction via estrogen receptor (ER)-α is checked by ERβ signaling. Endocrinology, 146(3), 1214–1225. https://doi.org/10.1210/en.2004-1219.
  • Paus, R., and Foitzik, K. (2004). In search of the ‘hair cycle clock’: a guided tour. Differentiation 2004 Dec;72(9-10):489-511. http://doi.org/10.1111/j.1432-0436.2004.07209004.x.
  • Pazzaglia, I., Mercati, F., Antonini, M., Capomaccio, S., Cappelli, K., Dall’aglio, C., la Terza, A., Mozzicafreddo, M., Nocelli, C., Pallotti, S., Pediconi, D., & Renieri, C. (2019). PDGFA in cashmere goat: A motivation for the hair follicle stem cells to activate. Animals, 9(2). https://doi.org/10.3390/ani9020038. Peng, Y., Liu, X., Geng, L., Ma, R., Li, L., Li, J., Zhang, C., Liu, Z., Gong, Y., and Li, X. (2017). Illumina-sequencing based transcriptome study of coat color phenotypes in domestic goats. Genes and Genomics, 39(8), 817–830. https://doi.org/10.1007/s13258-017-0543-6.
  • Plikus, M.V., Mayer, J.A., de la Cruz, D., Baker, R.E., Maini, P.K., Maxson ,R., et al. (2008). Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature. 2008 Jan; 451(7176): 340–4.
  • Powell, B.C., Passmore, E.A., Nesci, A., Dunn, S.M. (1998). The Notch signalling pathway in hair growth. Mech Dev 78: 189–192. https://doi.org/10.1016/S0925-4773(98)00177-4. Proweller, A., Tu, L., Lepore, J. J., Cheng, L., Lu, M. M., Seykora, J., Millar, S. E., Pear, W. S., & Parmacek, M. S. (2006). Impaired notch signaling promotes De novo squamous cell carcinoma formation. Cancer Research, 66(15), 7438–7444. https://doi.org/10.1158/0008-5472.CAN-06-0793.
  • Qiao, X., Wu, J. H., Wu, R. B., Su, R., Li, C., Zhang, Y. J., Wang, R. J., Zhao, Y. H., Fan, Y. X., Zhang, W. G., & Li, J. Q. (2016). Discovery of differentially expressed genes in cashmere goat (Capra hircus) hair follicles by RNA sequencing. Genetics and Molecular Research, 15(3). https://doi.org/10.4238/gmr.15038589. Richardson, G. D., Bazzi, H., Fantauzzo, K. A., Waters, J. M., Crawford, H., Hynd, P., Christiano, A. M., & Jahoda, C. A. B. (2009). KGF and EGF signalling block hair follicle induction and promote interfollicular epidermal fate in developing mouse skin. Development, 136(13), 2153–2164. https://doi.org/10.1242/dev.031427. Rishikaysh, P., Dev, K., Diaz, D., Shaikh Qureshi, W. M., Filip, S., & Mokry, J. (2014). Signaling involved in hair follicle morphogenesis and development. International Journal of Molecular Sciences, 15(1), 1647–1670. https://doi.org/10.3390/ijms15011647. Schmidt-Ullrich, R., Tobin, D. J., Lenhard, D., Schneider, P., Paus, R., & Scheidereit, C. (2006). NF-κB transmits Eda A1/EdaR signalling to activate Shh and cyclin D1 expression, and controls post-initiation hair placode down growth. Development, 133(6), 1045–1057. https://doi.org/10.1242/dev.02278.
  • Schmidt-Ullrich, R. and Paus, R. (2005). Molecular principles of hair follicle induction and morphogenesis. In BioEssays (Vol. 27, Issue 3, pp. 247–261). https://doi.org/10.1002/bies.20184.
  • Selli, F., Seki, Y., & Erdoğan, Ü. H. (2018). The effect of surface treatments on properties of various animal fibers as reinforcement material in composites. Tekstil ve Muhendis, 25(112), 292–302. https://doi.org/10.7216/1300759920182511202. Sennett, R., & Rendl, M. (2012). Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. In Seminars in Cell and Developmental Biology (Vol. 23, Issue 8, pp. 917–927). Elsevier Ltd. https://doi.org/10.1016/j.semcdb.2012.08.011.
  • Shang, F., Wang, Y., Ma, R., Di, Z., Wu, Z., Hai, E., Rong, Y., Pan, J., Liang, L., Wang, Z., Wang, R., Liu, Z., Zhao, Y., Wang, Z., Li, J., & Zhang, Y. (2021). Expression Profiling and Functional Analysis of Circular RNAs in Inner Mongolian Cashmere Goat Hair Follicles. Frontiers in Genetics, 12. https://doi.org/10.3389/fgene.2021.678825.
  • St-Jacques, B., Dassule, H. R., Karavanova, I., Botchkarev, V. A., Li, J., Danielian, P. S., Mcmahon, J. A., Lewis, P. M., Paus, R., Mcmahon, A. P. (1998). Sonic hedgehog signaling is essential for hair development. Curr Biol 1998 Sep 24;8(19):1058-68. https://doi.org/10.1016/s0960-9822(98)70443-9.
  • Stenn, K.S., and Paus, R. (2001). Controls of hair follicle cycling. Physiol Rev. 81, 449–494. https://doi.org/10.1152/physrev.2001.81.1.449. Su, R., Gong, G., Zhang, L., Yan, X., Wang, F., Zhang, L., Qiao, X., Li, X., and Li, J. (2020). Screening the key genes of hair follicle growth cycle in Inner Mongolian Cashmere goat based on RNA sequencing. Archives Animal Breeding, 63(1), 155–164. https://doi.org/10.5194/aab-63-155-2020. Su R, Fan Y, Qiao X, Li X, Zhang L, Li C, et al. (2018) Transcriptomic analysis reveals critical genes for the hair follicle of Inner Mongolia cashmere goat from catagen to telogen. PLoS ONE 13(10): e0204404. https://doi.org/10.1371/journal.pone.0204404.
  • Teichert, A., Elalieh, H., & Bikle, D. (2010). Disruption of the hedgehog signaling pathway contributes to the hair follicle cycling deficiency in Vdr knockout mice. Journal of Cellular Physiology, 225(2), 482–489. https://doi.org/10.1002/jcp.22227. Thomadakis, G., Ramoshebi, L. N., Crooks, J., Rueger, D. C., and Ripamonti, U. (1999). Immunolocalization of bone morphogenetic protein-2 and -3 and osteogenic protein-1 during murine tooth root morphogenesis and in other craniofacial structures. Eur. J. Oral. Sci. 107, 368–377. http://doi.org/10.1046/j.0909-8836. 1999.eos107508.x.
  • Ullrich, R., and Paus, R. (2005). Molecular principles of hair follicle induction and morphogenesis. BioEssays 27, 247–261. http://doi.org/10.1002/bies.20184.
  • Wang, J., Sui, J., Mao, C., Li, X., Chen, X., Liang, C., Wang, X., Wang, S. H., & Jia, C. (2021). Identification of key pathways and genes related to the development of hair follicle cycle in cashmere goats. Genes, 12(2). https://doi.org/10.3390/genes12020180.
  • Wang, J., Che, L., Hickford, J. G. H., Zhou, H., Hao, Z., Luo, Y., Hu, J., Liu, X., & Li, S. (2017). Identification of the caprine keratin-associated protein 20-2 (Kap20-2) gene and its effect on cashmere traits. Genes, 8(11). https://doi.org/10.3390/genes8110328.
  • Wang, L., Zhang, Y., Zhao, M., Wang, R., Su, R., & Li, J. (2015). SNP discovery from transcriptome of Cashmere goat skin. Asian-Australasian Journal of Animal Sciences, 28(9), 1235–1243. https://doi.org/10.5713/ajas.15.0172.
  • Wang, X., Tredget, E. E., & Wu, Y. (2012). Dynamic signals for hair follicle development and regeneration. In Stem Cells and Development (Vol. 21, Issue 1, pp. 7–18). https://doi.org/10.1089/scd.2011.0230. Watt, F. M., Estrach, S., & Ambler, C. A. (2008). Epidermal Notch signalling: differentiation, cancer and adhesion. In Current Opinion in Cell Biology (Vol. 20, Issue 2, pp. 171–179). https://doi.org/10.1016/j.ceb.2008.01.010. Watt, F.M., Lo Celso, C., Silva-Vargas, V. (2006). Epidermal stem cells: An update. Curr. Opin.Genet. Dev. 2006, 16, 518–524. https://doi.org/10.1016/j.gde.2006.08.006. Weiner, L., Han, R., Scicchitano, B. M., Li, J., Hasegawa, K., Grossi, M., Lee, D., & Brissette, J. L. (2007). Dedicated Epithelial Recipient Cells Determine Pigmentation Patterns. Cell, 130(5), 932–942. https://doi.org/10.1016/j.cell.2007.07.024.
  • Wu, C., Qin, C., Fu, X., Huang, X., & Tian, K. (2022). Integrated analysis of lncRNAs and mRNAs by RNA-Seq in secondary hair follicle development and cycling (anagen, catagen and telogen) of Jiangnan cashmere goat (Capra hircus). BMC Veterinary Research, 18(1). https://doi.org/10.1186/s12917-022-03253-0.
  • Wu, H., Che, X., Zheng, Q., Wu, A., Pan, K., Shao, A, et al. (2014). Caspases: a molecular switch node in the crosstalk between autophagy and apoptosis. Int J Biol Sci. 2014 Sep; 10(9): 1072–83.
  • Yuan, C., Wang, X., Geng, R., He, X., Qu, L., & Chen, Y. (2013). Discovery of cashmere goat (Capra hircus) microRNAs in skin and hair follicles by Solexa sequencing. http://www.biomedcentral.com/1471-2164/14/511 Zhao, B., Wu, C., Sammad, A., Ma, Z., Suo, L., Wu, Y., and Fu, X. (2022). The fiber diameter traits of Tibetan cashmere goats are governed by the inherent differences in stress, hypoxic, and metabolic adaptations: an integrative study of proteome and transcriptome. BMC Genomics, 23(1). https://doi.org/10.1186/s12864-022-08422-x.
  • Zheng, Y., Wang, Z., Zhu, Y., Wang, W., Bai, M., Jiao, Q., Wang, Y., Zhao, S., Yin, X., Guo, D., & Bai, W. (2020). LncRNA-000133 from secondary hair follicle of Cashmere goat: identification, regulatory network and its effects on inductive property of dermal papilla cells. Animal Biotechnology, 31(2), 122–134. https://doi.org/10.1080/10495398.2018.1553788. Zhou, G., Kang, D., Ma, S., Wang, X., Gao, Y., Yang, Y., Wang, X., & Chen, Y. (2018). Integrative analysis reveals ncRNA-mediated molecular regulatory network driving secondary hair follicle regression in cashmere goats. BMC Genomics, 19(1). https://doi.org/10.1186/s12864-018-