Assessment of the Nutraceutical Values of the Leaf of Tapinanthus Globiferus Hosted by the Neem Tree

Assessment of the Nutraceutical Values of the Leaf of Tapinanthus Globiferus Hosted by the Neem Tree

The objective of this study is to evaluate the nutraceutical values of the leaf of Tapinanthus globiferus hosted by the neem tree. The phytochemical composition, antioxidant activities, antidiabetic properties, anti-inflammatory capabilities, and proximate composition of the Tapinanthus globiferus leaf powder (TLP) were examined. The results revealed the phytochemical profiles: phenol (501.51 mg/g), alkaloids (408.25 mg/g), saponins (7.16 mg/g), steroids (7.16 mg/g), flavonoids 933.79 mg/g) and tannins (86.53 mg/g); antioxidant assay results: Ferrous chelating activity (51.17%), hydroxyl radical inhibition (55.96%), ABTS (76.09%), DPPH (71.34%) and lipid oxidation inhibition (66.18%); antidiabetic assay results: the α-glucosidase inhibition (75.88%) and α-amylase inhibition (72.14 %); anti-inflammatory assays: antiproteinase activity (72.38%) and albumin denaturation inhibition (44.67%) of TLP. Tapinanthus globiferus leaf powder has nitrogen-free extract content of 36.09%, 18.47% crude protein, 13.27% moisture, 12.78% ash, 9.44% crude fibre, and 9.93% crude fat. These findings indicated that TLP had anti-inflammatory, anti-diabetic, and antioxidant properties.

___

  • Adeniyi, S. A., Orjiekwe, C. L., & Ehiagbonare, J. E. (2009). Determination of alkaloids and oxalates in some selected food samples in Nigeria. African Journal of Biotechnology, 8(1),110-112.
  • Adjimani, J.P., & Asare, P. (2015). Antioxidant and free radical scavenging activity of iron chelators, Toxicology Reports, 721-728. https://doi.org/10.1016/j.toxrep.2015.04.005.
  • Amat-Ur-Rasool, H., Symes, F., Tooth, D., Schaffert, L.N., Elmorsy, E., Ahmed, M., Hasnain, S., & Carter, W.G. (2020). Potential Nutraceutical Properties of Leaves from Several Commonly Cultivated Plants. Biomolecules, 10(11), 1556. doi: 10.3390/biom10111556.
  • AOAC. (2010). Official Methods of Analysis of Association of Offical Analytical Chemists. 18th Edition, Washington DC.
  • Bajpai, V.K., Park ,Y., & Agrawal, P. (2015). Studies on phytochemical analysis, antioxidant and lipid peroxidation inhibitory effects of a medicinal plants, Coleus forskohlii. Frontiers in Life Science, 8(2), 139-147. https://doi.org/10.1080/21553769.2014.998777.
  • Biswas, A., Dey, S., Li, D., Yiu, L., Zhang, J., Huang, S., Pan, G., & Deng, Y. (2020). Comparison of Phytochemical Profile, Mineral Content, and In Vitro Antioxidant Activities of Corchorus capsularis and Corchorus olitorius Leaf Extracts from Different Populations Journal of Food Quality, 2020, 2020(9). https://doi.org/10.1155/2020/2931097.
  • Das, L., Bhaumik, E., Raychaudhuri, U., & Chakraborty, R. (2012). Role of nutraceuticals in human health. Journal of Food Science and Technology, 49(2):173-83. doi: 10.1007/s13197-011-0269-4.
  • Dej-adisai, S., & Pitakbut, T. (2015). Determination of α-glucosidase inhibitory activity from selected Fabaceae plants. Pakistan Journal of Pharmacological Science, 28(5), 1679-1683. https://pubmed.ncbi.nlm.nih.gov/26408887/
  • Ambriz-Pérez, Leyva-López, N., Gutierrez-Grijalva, E.P., & Heredia, J.B. (2016). Phenolic compounds: Natural alternative in inflammation treatment. A Review. Cogent Food and Agriculture, 2:1, DOI: 10.1080/23311932.2015.1131412.
  • Duthie, G.G., Gardner, P.T., & Kyle, J.A.M. (2003). Plant polyphenols: are they the new magic bullet? Proceedings of Nutrition Society, 62:599–603. doi: 10.1079/PNS2003275. Ebrahimzadeh, M.A., Pourmorad, F., & Bekhradnia, A.R. (2008). Iron chelating activity, phenol and flavonoid content of some medicinal plants from Iran. African Journal of Biotechology, 7 (18): 3188-3192.
  • Hathcock, J. (2001). Dietary supplements: how they are used and regulated. Journal of Nutrition, 131, 1114–1117.
  • He, J., Wu, Z. Y., Zhang, S., Zhou, Y., Zhao, F., Peng, Z. Q., & Hu, Z. W. (2014). Optimisation of microwave‐assisted extraction of tea saponin and its application on cleaning of historic silks. Journal of Surfactants and Detergents, 17(5), 919-928. https://doi.org/10.1007/s11743-013-1523-8.
  • Ishiwu, C.N., Obiegbun, J.E., & Aniagolu, N.M. (2013). Evaluation of chemical properties of mistletoe leaves from three different trees (Avocado, African Oil Bean and Kola). Nigerian Food Journal, 31(2): 1-7. https://doi.org/10.1016/S0189- 7241(15)30070-9.
  • Jha, S.K., Roy, P., & Chakrabarty, S. (2021). Nutraceuticals of pharmaceutical importance and their applications. International Journal of Drug Development and Research, 13,1-10.No.S3:002. https://www.ijddr.in/
  • Lacroix, I.M.E., & Li-Chan, E.C.Y. (2014). Overview of food products and dietary constituents with antidiabetic properties and their putative mechanisms of action: a natural approach to complement pharmacotherapy in the management of diabetes. Molecular Nutrition and Food Research, 58,61–78. doi: 10.1002/mnfr.201300223.
  • Lämke, J.S., & Unsicker, S.B. (2018). Phytochemical variation in treetops: causes and consequences for tree-insect herbivore interactions. Oecologia, 187, 377–388. https://doi.org/10.1007/s00442-018-4087-5.
  • Leyva-Jimenez, F.J., Ruiz-Malagon, A.J., Molina-Tijeras, J.A., Diez-Echave P., Vezz,a T., Hidalgo-Garcia, L., Lozano-Sanchez, J., Arraez-Roman, D., Cenis, J.L., Lozano-Perez, A.A., Rodríguez-Nogales, A., Segura-Carretero, A., & Gálvez, J. (2020). Comparative Study of the Antioxidant and Anti-Inflammatory Effects of Leaf Extracts from Four Different Morus alba Genotypes in High Fat Diet-Induced Obesity in Mice. Antioxidants, 9,733. doi: 10.3390/antiox9080733.
  • Madhu, M., Sailaja, V., Satyadev, T. N. V. S. S., & Satyanarayana, M. V. (2016). Quantitative phytochemical analysis of selected medicinal plant species by using various organic solvent. Journal of Pharmacognosy and Phytochemistry, 5(2), 25-29. https://www.phytojournal.com/archives/2016/vol5issue2/PartA/5-1-31.pdf.
  • Madhu, M., Sailaja, V., Satyadev, T. N. V. S. S., & Satyanarayana, M. V. (2016). Quantitative phytochemical analysis of selected medicinal plant species by using various organic solvent. Journal of Pharmacognosy and Phytochemistry, 5(2), 25-29. https://www.phytojournal.com/archives/2016/vol5issue2/PartA/5-1-31.pdf.
  • Mahanta, J.D., Borgohain, B., Sarma, M., Sapcota, D., & Hussain, J. (2017). Effect of dietary supplementation of herbal growth promoter on performance of commercial broiler chicken. Indian Journal of Animal Research, 51,1097–1100.
  • Naz, R., Ayub, H., Nawaz, S., Islam, Z.U., Yasmin, T., Bano, A., Wakeel, A., Zia, S., Robert, T.H. (2017). Antimicrobial activity, toxicity and anti-inflammatory potential of methanolic extracts of four ethnomedicinal plant species from Punjab, Pakistan. BMC Complementary and Alternative Medicine, 17(1), 302. doi: 10.1186/s12906-017-1815-z.
  • Oloruntola, O.D., & Ayodele, S.O. (2022). Phytochemical, proximate and mineral composition, antioxidant and antidiabetic properties evaluation and comparison of mistletoe leaves from moringa and kola nut trees. Turkish Journal of Agriculture - Food Science and Technology, 10(8), 1524-1531. https://doi.org/10.24925/turjaf.v10i8.1524-1531.5134.
  • Oloruntola, O.D., Ayodele, S.O., Adeyeye, S.A., Fasuhami, O.S., Osowe, C.O., & Ganiyu , T.O. (2022). Proximate composition, phytochemical profile, antioxidant, antidiabetic and anti-inflammatory properties of Justicia carnea leaf powder. Black Sea Journal of Agriculture, 5(4), 415-423. doi: 10.47115/bsagriculture.1145262.
  • Oloruntola, O.D. (2021). Proximate, phytochemical, mineral composition and antioxidant activity of Anacardium occidentale L. leaf powder. DYSONA - Life Science, 2 (2021), 39-49. https://doi.org/ 10.30493/DLS.2021.290718.
  • Oloruntola, O. D. (2022). Juglans regia Kernel Meal; A prospective nutraceutical feed supplement. Biotech Studies, 31(2), 87-94. http://doi.org/10.38042/biotechstudies.1222785.
  • Osman, N. I. Sidik, N. J., Awal, A., Adam, N. A. & Rezali, N. I. (2016). In vitro xanthine oxidase and albumin denaturation inhibition assay of Barringtonia racemosa L. and total phenolic content analysis for potential anti-inflammatory use in gouty arthritis. Journal of Intercultural Ethnopharmacology, 5(4), 343-349. https://doi.org/10.5455/jice.20160731025522.
  • Otles, S., & Yalcin, B. (2012). Phenolic compounds analysis of root, stalk, and leaves of nettle. Scientific World Journal, 2012, 564367. https://doi: 10.1100/2012/564367.
  • Ozgen, M., Reese, R.N., Tulio, A.Z. Jr, Scheerens, J.C., Miller, A.R. (2006). Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of Selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) methods. Journal of Agricultural and Food Chemistry, 54(4),1151-1157. doi: 10.1021/jf051960d.
  • Padmavathi, D. (2018). A general review on “Nutraceuticals”͗ Its golden health impact over human community. International Journal of Food Sciences and Nutrition, 3, 214-217.
  • Pandey, M., Verma, R.K., & Saraf, S.A. (2010). Nutraceuticals: New era of medicine and health. Asian Journal of Pharmaceutical and Clinical Research, 3, 11–15.
  • Pourhossein, Z., Qotbi, A.A.A., Seidavi, A., Laudadio, V., Centoducati, G., & Tufarelli, V. (2015). Effect of different levels of dietary sweet orange (Citrus sinensis) peel extract on humoral immune system responses in broiler chickens. Animal Science Journal, 86, 105–110. doi: 10.1111/asj.12250.
  • Rajesh, A., Dossa, A., Tresina, P.S., & Mohan, V.R. (2019). Anti-inflammatory activity of methanol extract of Niebuhria apetala (Roth) Dunn – in vitro models. Asian Journal of Pharmaceutical and Clinical Research, 12(5), 278-281. https://doi.org/10.22159/ajpcr.2019.v12i5.32512.
  • Salminen, A., Kauppinen, A., & Kaarniranta, K. (2014). Inflammaging Signaling in Health Span and Life Span Regulation: Next Generation Targets for Longevity, Editor(s): Irfan Rahman, Debasis Bagchi, Inflammation, Advancing Age and Nutrition, Academic Press, Pp. 323-332. https://doi.org/10.1016/B978-0-12-397803-5.00027-7.
  • Sekhon-Loodu, S., & Rupasinghe, H.P.V. (2019). Evaluation of Antioxidant, Antidiabetic and Antiobesity Potential of Selected Traditional Medicinal Plants. Frontiers Nutrition, 6, 53. doi: 10.3389/fnut.2019.00053
  • Stromsnes, K., Correas, A. G., Lehmann, J., Gambini, J., & Olaso-Gonzalez, G. (2021). Anti-Inflammatory Properties of Diet: Role in Healthy Aging. Biomedicines, 9(8), 922. https://doi.org/10.3390/biomedicines9080922.
  • Surana, A.R., Kumbhare, M.R., & Wagh, R.D. (2016). Estimation of total phenolic and total flavonoid content and assessment of in vitro antioxidant activity of extracts of Hamelia patens Jacq. stems. Research Journal of Phytochemistry, 10(2), 67-74. http://dx.doi.org/10.3923/rjphyto.2016.67.74.
  • Tijani, A.A., Adekomin, D.A., & Adewole, S.O. (2018). In vitro and in vivo determination of hydroxyl radical scavenging activity (HRSA) of fractions of aqueous extract of Moringa oleifera leaves (AEMOL). Eurasian Journal of Medicine and Onclogy, 2(4), 209-216. DOI: 10.14744/ejmo.2018.46330.
  • Turkoglu, S., Celik, S., Turkoglu, I., Cakilcioglu, U., & Bahsi, M. (2010). Determination of the antioxidant properties of ethanol and water extracts from different parts of Teucrium parviflorum Schreber. African Journal of Biotechnology, 9(40), 6797-6805.
  • Wang, H., Liu, .T, Huang, D. (2013). Starch hydrolase inhibitors from edible plants. Advances in Food and Nutrition Research, 70,103–136. doi: 10.1016/B978-0-12-416555-7.00003-5.
  • Wang, L., Kong, D., Tian, J., Zhao, W., Chen, Y., An, Y., Liu, X., Wang, F., Cai, F., Sun, X., Liu, Q., Zhang, W., Tian, J., & Zhou, H. (2022). Tapinanthus species: A review of botany and biology, secondary metabolites, ethnomedical uses, current pharmacology and toxicology. Journal of Ethnopharmacology, 296, 115462. https://doi.org/10.1016/j.jep.2022.115462.
  • Wickramaratne, M.N., Punchihewa, J.C., & Wickramaratne, D.B. (2016). In-vitro alpha-amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC Complementary Alternative Medicine, 16(1), 466. https://doi.org/10.1186/s12906-016-1452-y.
  • Yildirim, I., & Kutlu, T. (2015). Anticancer Agents: Saponin and Tannin. International Journal of Biological Chemistry, 9 (6), 332-340. DOI: 10.3923/ijbc.2015.332.340.
  • Zhang, Y.J., Gan, R.Y., Li, S., Zhou, Y., Li, A.N., Xu, D.P., & Li, H.B. (2015). Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases, Molecules, 20(12), 21138-21156. doi: 10.3390/molecules201219753.