Argümantasyon Öğretimini Etkileyen Faktörler Ölçeğinin Türkçe’ye Adaptasyonu

Bu çalışmanın amacı, argümantasyon öğretimini etkileyen faktörler ölçeğinin Türkçe’ye uyarlanmasıdır. Çalışmaya Türkiye’nin doğusunda ve batısında yer alan iki farklı üniversitede öğrenimlerine devam etmekte olan toplam 143 Fen Bilimleri öğretmen adayı katılmıştır. Adaptasyon sürecinde ilk olarak yapı, yöntem ve madde yanlılıkları giderilmiştir. Daha sonra ölçeğin yapı geçerliği açımlayıcı ve doğrulayıcı faktör analizi ile ortaya konmaya çalışılmıştır. Analiz sonuçları, 21 maddelik ölçeğin 3 faktörlü bir yapıya sahip olduğunu doğrulamıştır. Ardından ölçeğin bütünü ve alt boyutları için cronbach alfa değeri hesaplanmış ve bu değerlerin, tatmin edici sınırlar içerisinde olduğu tespit edilmiştir. Mevcut çalışmanın, öğretmenlerin ve öğretmen adaylarının argümantasyon uygulamalarını etkileyen faktörlerin tespit edilmesi sürecinde kullanılabilecek geçerli ve güvenilir bir ölçme aracını literatüre kazandırdığı ifade edilebilir. Böylece uyarlanan ölçek ile elde edilen verilerin, argümantasyonun fen sınıflarında daha fazla kullanılmasına katkıda bulunacağı düşünülmektedir.

Adaptation of the Scale of the Factors Affecting Argumentation Instruction into Turkish

The aim of this study is to adapt the scale of the factors affecting argumentation instruction into Turkish. A total of 143 preservice science teachers studying in two different universities located in the east and west of Turkey participated in this study. In the process of adaptation firstly, structure, method and item biases were elimanated. After that the construct validity of the scale was determined by exploratory and confirmatory factor analysis. The results of the analysis confirmed that the 21-item scale had a three-factor-structure. Then, the cronbach's alpha value was measured for the whole scale and its sub-dimensions, and these values were found to be within satisfactory limits. It is thought that this study provides a valid and reliable measurement tool that can be used in the process of determining the factors affecting the argumentation instruciton of teachers and preservice teachers. Thus, it can be stated that the data obtained with the adapted scale will contribute to the further use of argumentation in science classes.

___

  • Bandura, A. (1977). Self-eficacy: Toward a unifying theory of behavioral change. Psychological Reviev, 84(2), 191-215.
  • Bayık, M., & Gurbuz, S. (2016). Methodological issues in scale adaptation: a study on adapted scales in the management and organization field. The Journal of Human and Work, 3(1), 1-20.
  • Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York: Guilford Publications, Inc.
  • Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136–162). Newbury Park, CA: Sage
  • Büyüköztürk Ş., (2006). Sosyal bilimler için veri analizi el kitabı. Ankara: Pegema Yayıncılık.
  • Can, A. (2016). SPSS ile bilimsel araştırma sürecinde nicel veri analizi. Ankara: Pegem Akademi
  • Chin, C. S. (2008). Current practices of scientific discourse and argumentation in science education: A mixed methods investigation based in Brunei Darussalam (Unpublished master thesis). University of Bristol, England.
  • Duschl, R., Ellenbogan, K., & Erduran, S. (1999, March). Promoting argumentation in middle school science classrooms: A project SEPIA evaluation. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Boston.
  • Erduran, S., Ozdem, Y., & Park, J. Y. (2015). Research trends on argumentation in science education: A journal content analysis from 1998–2014. International Journal of STEM Education, 2(1), 1-12.
  • Evren-Yapıcıoğlu, A., & Kaptan, F. (2018). Sosyobilimsel durum temelli öğretim yaklaşımının argümantasyon becerilerinin gelişimine katkısı: Bir karma yöntem araştırması. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 37(1), 39-61.
  • Gamble, B. (1999), Measurement and scaling: noncomparative scaling techniques. In N. K. Malhotra (Eds.), Marketing research: An applied orientation (pp. 272- 299). Pearson Education.
  • Hambleton, R. K. (1996). Guidelines for adapting educational and psychological tests. European Journal of Psychological Assessment, 10, 229-244.
  • Hambleton, R. K., & Patsula, L. (1999). Increasing the validity of adapted tests: Myths to be avoided and guidelines for improving test adaptation practices. Journal of Applied Testing Technology, 1(1), 1-30.
  • Hung, N. V. (2011). Why should we investigate secondary school teacher beliefs and teacher perceptions of English language teaching. VNU Journal of Science, Foreign Languages, 27, 124-131.
  • Katsh‐Singer, R., McNeill, K. L., & Loper, S. (2016). Scientific argumentation for all? Comparing teacher beliefs about argumentation in high, mid, and low socioeconomic status schools. Science Education, 100(3), 410-436.
  • Kaya, E., Cetin, P. S., & Erduran, S. (2014). Adaptation of two argumentation tests into Turkish. Elementary Education Online, 13(3), 1014-1032.
  • Knight‐Bardsley, A., & McNeill, K. L. (2016). Teachers’ pedagogical design capacity for scientific argumentation. Science Education, 100(4), 645-672.
  • MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1, 130–149.
  • McNeill, K. L., & Knight, A. M. (2013). Teachers’ pedagogical content knowledge of scientific argumentation: The impact of professional development on K-12 teachers. Science Education, 97, 936–972.
  • McNeill, K. L., & Krajcik, J. (2009). Synergy between teacher practices and curricular scaffolds to support students in using domain-specific and domain-general knowledge in writing arguments to explain phenomena. Journal of the Learning Sciences. 18(3), 416-460.
  • McNeill, K. L., & Pimentel, D. S. (2009). Scientific discourse in three urban classrooms: The role of the teacher in engaging high school students in argumentation. Science Education, 94(2), 203-229.
  • McNeill , K. L., Pimentel, D. S., & Strauss, E. G. (2013). The impact of high school science teachers’ beliefs, curricular enactments and experience on student learning during an inquiry-based urban ecology curriculum. International Journal of Science Education, 35(15), 2608-2644.
  • McNeill, K. L., Katsh-Singer, R., González-Howard, M., & Loper, S. (2016). Factors impacting teachers' argumentation instruction in their science classrooms. International Journal of Science Education, 38(12), 2026-2046.
  • Ministry of National Education [MoNE], (2013). Turkish Elementary School Science Curriculum. Ankara.
  • Ministry of National Education [MoNE], (2018). Turkish Elementary School Science Curriculum. Ankara.
  • Newton, P., Driver, R., & Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553-576.
  • Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in science classrooms. Journal of Research in Science Teaching, 41(10), 994–1020.
  • Önen, E. (2009). Examination of measurement invariance with structural equation modelling techniques (Unpublished Doctoral Thesis). Ankara University, Ankara.
  • Pallant, A., Lee, H. S., & Pryputniewicz, S. (2013, April). Promoting scientific argumentation with computational models. Paper presented at the Annual meeting of the National Association for Research in Science Teaching, Rio Grande, Puerto Rico.
  • Prime, G. M., & Miranda, R. J. (2006). Urban public high school teachers’ beliefs about science learner characteristics: Implications for curriculum. Urban Education, 41(5), 506-532.
  • Rebello, C. M., & Barrow, L. H. (2013, April). Exploring the effects of scaffolding on college students’ solutions and argumentation quality on conceptual physics problems. National Association for Research in Science Teaching, Rio Grande, Puerto Rico.
  • Ruiz-Ortega, F. J., Tamayo Alzate, O. E., & Márquez Bargalló, C. (2015). A model for teaching argumentation in science class. Educação e Pesquisa, 41(3), 629-646.
  • Sampson, V., & Blanchard, M. R. (2012). Science teachers and scientific argumentation: Trends in views and practice. Journal of Research in Science Teaching, 49(9), 1122-1148.
  • Sampson, V. & Clark, D. (2006). The development and validation of the nature of science as argument questionnaire (NSAAQ). Paper presented at the Annual Conference of the National Association for Research in Science Teaching, San Francisco, CA
  • Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research Online, 8(2), 23-74.
  • Tippett, C. (2009). Argumentation: The language of science. Journal of Elementary Science Education, 21(1), 17-25.
  • Toulmin, S. (1958). The uses of argument. Cambridge University Press: England.
  • Uzunsakal, E., & Yıldız, D. (2018). Alan araştırmalarında güvenilirlik testlerinin karşılaştırılması ve tarımsal veriler üzerine bir uygulama. Uygulamalı Sosyal Bilimler Dergisi, 2(1), 14-28.
  • van de Vijver, F. J. R., & Hambleton, R. K. (1996). Translating tests: Some practical guidelines. European Psychologist, 1, 89-99.
  • van Eemeren, F. H., & Grootendorst, R. (1996). A systematic theory of argumantation. Cambridge: Cambridge University Press.
  • Wang, J., & Buck, G. A. (2016). Understanding a high school physics teacher’s pedagogical content knowledge of argumentation. Journal of Science Teacher Education, 27(5), 577-604.
  • Yıldız, H., & Cimete, G. (2011). Adaptation study of the Texas Revised Inventory of Grief. Anadolu Psikiyatri Dergisi, 12(1), 30-36.
Kuramsal Eğitimbilim Dergisi-Cover
  • ISSN: 1308-1659
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2008
  • Yayıncı: Afyon Kocatepe Üniversitesi Eğitim Fakültesi