Ailelerin Çocuklarını Bilime Yönlendirme Düzeylerini Belirleme: Ölçek Geliştirme Çalışması

Bu çalışmanın amacı, ailelerin çocuklarını bilime yönlendirme düzeylerini belirlemek için kullanılabilecek bir ölçek geliştirmektir. Çalışma temel araştırma niteliğinde yürütülmüştür. Amaç doğrultusunda ilk olarak ilgili alan yazın taranarak madde havuzu oluşturulmuştur. Oluşturulan madde havuzu uzman görüşüne sunulmuş ve daha sonra ölçeğin pilot uygulaması yapılmıştır. Uygulama kapsamında toplam 505 ebeveyn araştırmanın çalışma grubunu oluşturmuştur. Uygulama iki aşamada yürütülmüştür. Birinci aşamada 324 kişiye uygulanan ölçekten elde edilen veriler açımlayıcı faktör analizine tabi tutulmuştur. İkinci aşamada ise 181 kişiye uygulanan ölçekten elde edilen veriler doğrulayıcı faktör analizi için kullanılmıştır. Açımlayıcı faktör analizi sonucu faktör yüklerinin .521 ile .893 arasında değiştiği, Kaiser-Meyer-Olkin değerinin .866, açıklanan toplam varyansın %62.254 ve Cronbach’s Alpha değerinin ise .907 olduğu bulunmuştur. Doğrulayıcı faktör analizi sonucu ise X 2 /Sd değerinin 2 olduğu, RMSEA değerinin .079 olduğu bulunmuştur. Yapılan araştırma doğrultusunda elde edilen verilerin analiz sonuçlarına göre araştırmacılar tarafından geçerliği ve güvenirliği sağlanmış 18 maddeden oluşan 5’li likert tipinde 3 faktörlü bir ölçek elde edilmiştir. Ölçekte yer alan faktörler “Pratik Uygulamalar (Etkinlik ve Deney)”, “Bilimle Tanıştırma” ve “Bilimsel Temel Oluşturma” olarak adlandırılmıştır. Geliştirilen ölçek ile alandaki araştırmacıların, farklı demografik özelliklere sahip ve farklı yaş gruplarında çocuğu olan ailelerin çocuklarını bilime yönlendirme düzeylerini belirleyebileceği düşünülmektedir.

Determining the Levels of How Families Shape Children's Engagement with Science: A Scale Development Study

This study aims to develop a scale that can be used to determine the levels of how families shape children's engagement with science. The study was conducted in the basic research design. The data collection was carried out in two stages. In the first stage, the data obtained from the scale, which was applied to 324 people, were subjected to exploratory factor analysis (EFA). In the second stage, data from 181 people were used for confirmatory factor analysis (CFA). As a result of the EFA, it was found that the factor loads ranged from 0.521 to 0.893, the Kaiser-Meyer-Olkin value was 0.866, the total variance explained was 62.254%, and the Cronbach's alpha value was 0.907. As a result of the CFA, however, it was found that the X2/Sd value was 2.08, and the RMSEA value was 0.077. According to the analysis results, a 5-point, 3-factor Likert type scale, consisting of 18 items, was obtained, with validity and reliability. The factors involved in the scale were called "Practical Applications (Activities and Experiments)", "Introduction to Science" and "Building Scientific Foundations". With the developed scale, it is believed that researchers in the field can determine the level of orientation of children of families with different demographics and children of different age groups to science.

___

  • Akerson, V. L., Buck, G. A., Donnelly, L. A., Nargund, V., & Weiland, I. S. (2011). The importance of teaching and learning nature of science in the early childhood years. The Journal of Science Education and Technology, 20, 537-549. https://doi.org/10.1007/s10956-011-9312-5.
  • Akman, B., Üstün, E., & Güler, T. (2003). Using science process skills in 6 years old children. Hacettepe University Journal of Education, 24, 11-14.
  • Aksüt, P. (2019). Erken çocukluk döneminde fen eğitimi nedir? [What is science education in early childhood?] In Pelin A. (Ed.), Erken çocukluk döneminde fen eğitimi [Science education in early childhood] (pp. 1-22). Nobel Academic Publishing.
  • Aktamış, H., Ünal, G., & Ergin, Ö. (2008). Öğrencilerin fene yönelik tutumlarına ailelerin etkisi [Students' attitudes towards science influence of their families]. Aile ve Toplum, 14(4), 39-48.
  • Appiah-Kubi, J., & Amoako, E. O. (2020). Parental participation in children’s education: Experiences of parents and teachers in Ghana. Kuramsal Eğitimbilim Dergisi [Journal of Theoretical Educational Science], 13(3), 456-473. http://dx.doi.org/10.30831/akukeg.634484
  • Archer, L., DeWitt, J., Osborne, J., Dillon, J., Willis, B., & Wong, B. (2012). Science aspirations, capital, and family habitus: How families shape children’s engagement and identification with science. American Education Research Journal, 49(5), 881- 908. https://doi.org/10.3102/0002831211433290
  • Aydeniz, M. (2017). Eğitim sistemimiz ve 21. yüzyıl hayalimiz: 2045 hedeflerine ilerlerken, Türkiye için STEM odaklı ekonomik bir yol haritası [Our education system and our 21st-century dream: A STEM-focused economic roadmap for Turkey as we move towards 2045 goals]. University of Tennessee.
  • Ayvacı, H. Ş., Atik, A., & Ürey, M. (2016). The perceptions of preschool children on the concept of scientist. Bartin University Journal of Faculty of Education, 5(3), 669-689. https://doi.org/10.14686/buefad.v5i3.5000193186
  • Bell, R. L., & St. Clair, T. L. (2015). Too little too late: Addressing nature of science in early education. In M. C. Trundle & M. Sackes (Eds.), Research in early childhood science education (pp. 125-141). Springer.
  • Bucci Liddy, C. M., Brumariu, L. E., Diaconu-Gherasim, L. R., & Hunter, D. M. (2021). Maternal parenting and teaching strategies: relations with children’s academic competence. Educational Studies, https://doi.org/10.1080/03055698.2021.1940870
  • Calabrese Barton, A., Hindin, T. J., Contento, I. R., Trudeau, M., Yang, K., Hagiwara, S., & Koch, P. D. (2001). Underprivileged urban mothers’ perspectives on science. Journal of Research in Science Teaching, 38(6), 688-711. https://doi.org/10.1002/tea.1026
  • Calabrese Barton, A., & Yang, K. (2000). The culture of power and science education: Learning from Miguel. Journal of Research in Science Teaching, 37(8), 871-889. https://doi.org/10.1002/1098-2736(200010)37:8<871::AID-TEA7>3.0.CO;2-9
  • Can, A. (2014). SPSS ile bilimsel araştırma sürecinde nicel veri analizi [Quantitative data analysis in the scientific research process with SPSS]. Pegem A Publishing.
  • Caspi, A., Gorsky, P., Nitzani-Hendel, R., Zacharia, Z. C., Rosenfeld, S., & Shildhouse, B. (2020). Children’s perceptions of the factors that led to their enrolment in advanced, middle-school science programmes. International Journal of Science Education, 42(11), 1915-1939. https://doi.org/10.1080/09500693.2020.1802083
  • Christensen, L., Johnson, R., & Turner, L. (2014). Research methods, design, and analysis. Pearson.
  • Crowley, K., Callanan, M. A., Jipson, J. L., Galco, J., Topping, K., & Shrager, J. (2001). Shared scientific thinking in everyday parent-child activity. Science Education, 85, 712-732. https://doi.org/10.1002/sce.1035
  • DeWitt, J., Osborne, J., Archer, L., Dillon, J., Willis, B., & Wong, B. (2013). Young children’s aspirations in science: The unequivocal, the uncertain and the unthinkable. International Journal of Science Education, 35(6), 1037-1063. https://doi.org/10.1080/09500693.2011.608197
  • Dierking, L. D., & Falk, J. H. (1994). Family behavior and learning in informal science settings: A review of the research. Science Education, 78(1), 57-72.
  • Eccles, J. S. (2007). Families, schools, and developing achievement-related motivations and engagement. In J. E. Grusec & P. D. Hastings (Eds.), Handbook of socialization (pp. 665–691). The Guilford Press.
  • Eisenberg, N., Vidmar, M., Spinrad, T. L., Eggum, N. D., Edwards, A., Gaertner, B., & Kupfer, A. (2010). Mothers’ teaching strategies and children’s effortful control: A longitudinal study. Developmental Psychology, 46(5), 1294-1308. https://doi.org/10.1037/a0020236
  • Fraenkel, J. R., Wallen, N. E., & Huyn, H. H. (2011). How to design and evaluate research in education. MacGraw-Hill.
  • Fragkiadaki, G., & Ravanis, K. (2021). The unity between intellect, affect, and action in a child’s learning and development in science. Learning, Culture and Social Interaction, 29. https://doi.org/10.1016/j.lcsi.2021.100495
  • Giles, R. M. (2021). Science, technology, and literacy? Assessing the potential for children’s reading and writing in four science centres, International Journal of Early Years Education, 29(1), 88-95. https://doi.org/10.1080/09669760.2020.1759400
  • Goldman, S., Luce, M. R., & Vea, T. (2021). Opportunities and tensions in family science: challenging dominant paradigms of science education. Cultural Studies of Science Education, 16, 621-641. https://doi.org/10.1007/s11422-020-09998-0
  • González, N., Moll, L. C., & Amanti, C. (2005). Funds of knowledge: Theorizing practices in households, communities, and classrooms. Routledge. Güler, T., & Akman, B. (2006). 6 year old children’s views on science and scientists. Hacettepe University Journal of Education, 31, 55-66.
  • Hinton, P. R., McMurray, I., & Brownlow, C. (2014). SPSS explained. Routledge.
  • Kaya, G., Şardağ, M., Cakmakci, G. Doğan, N., İrez, S., & Yalaki, Y. (2016). Discourse patterns and communicative approaches for teaching nature of science. Education and Science, 41(185), 83-99. https://doi.org/10.15390/EB.2016.4852
  • Keçe, B., Saraçoğlu, S., & Bektaş, O. (2020). Developing a scientific attitude scale: Validity and reliability study. MM-International Journal of Educational Sciences, 4(2), 32-56. https://doi.org/10.46762/mamulebd.774267
  • Kefi, S., Çeliköz, N., & Erişen, Y. (2013). Preschool teachers’ levels of using the basic science process skills. Journal of Research in Education and Teaching, 2(2), 300- 319.
  • Keifert, D., & Stevens, R. (2019). Inquiry as a members’ phenomenon: Young children as competent inquirers. Journal of the Learning Sciences, 28(2), 240-278. https://doi.org/10.1080/10508406.2018.1528448.
  • Kline, R. B. (2005). Principles and practice of structural equation modeling (2nd ed.). Guilford.
  • Kunt, B. (2015). The Preschool student’s determination of science process skills (60 - 72 months) [Unpublished master’s thesis] Dumlupınar University, Institute of Education Sciences.
  • Kurt, U., & Taş, Y. (2019). Prediction of students’ strategies for doing science homework by parental support and students’ goal orientation. Pegem Eğitim ve Öğretim Dergisi, 9(2), 585-604, http://dx.doi.org/10.14527/pegegog.2019.019.
  • Leibham, M. B., Alexander, J. M., & Johnson, K. E. (2013). Science interests in preschool boys and girls. Science Education, 97(4), 574–593. https://doi.org/10.1002/sce.21066.
  • McComas, W. F. (2014). Science process skills. In McComas W.F. (Ed.), The language of science education. Sense Publishers
  • Moll, L. C. (2014). L. S. Vygotsky and education. Routledge.
  • Morgan, P. L., Farkas, G., Hillemeier, M. M., & Maczuga, S. (2016). Science achievement gaps begin very early, persist, and are largely explained by modifiable factors. Educational Researcher, 45(1), 18–35. https://doi.org/10.3102/0013189X16 633182.
  • National Research Council [NRC]. (1996). National science education standards. National Academy of Sciences.
  • National Research Council [NRC]. (2007). Taking science to school: Learning and teaching science in grades k-8. National Academies Press. https://doi.org/10.17226/11625.
  • National Research Council [NRC]. (2011). Successful K-12 science education: identifying effective approaches in science, technology, engineering and mathematics. The National Academic Press.
  • National Research Council [NRC]. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press. https://doi.org/10.17226/13165.
  • Pallant, J. (2001). SPSS survival manual. Open University Press.
  • Quiley, C., Buck, G., & Akerson, V. (2011). The NOS challenge. Science and Children, 49, 57-61.
  • Raynal, A., Lavigne, H., Goldstein, M., & Gutierrez, J. (2021). Starting with parents: Investigating a multi‐generational, media‐enhanced approach to support informal science learning for young children. Early Childhood Education Journal. https://doi.org/10.1007/s10643-021-01209-x
  • Sawyer, R. K. (2005). The Cambridge handbook of the learning sciences. Cambridge University Press.
  • Silander, M., Grindal, T., Hupert, N., Garcia, E., Anderson, K., Vahey, P., & Pasnik, S. (2018). What parents talk about when they talk about learning: a national survey about young children and science. Education Development Center.
  • Schumacker, R. E., & Lomax, R. G. (2004). A beginner’s guide to structural equation modeling. Lawrence Erlbaum Associates.
  • Šimunović, M., & Babarović, T. (2021). The role of parental socializing behaviors in two domains of student STEM career interest. Research in Science Education, 51, 1055-1071. https://doi.org/10.1007/s11165-020-09938-6
  • Solis, G., & Callanan, M. (2016). Evidence against deficit accounts: Conversations about science in Mexican heritage families living in the United States. Mind, Culture, and Activity, 23(3), 212-224. https://doi.org/10.1080/10749039.2016.1196493
  • Strickler-Eppard, L., Czerniak, C. M., & Kaderavek, J. (2019). Families’ capacity to engage in science inquiry at home through structured activities. Early Childhood Education Journal, 47(6), 653-664. https://doi.org/10.1007/s10643-019-00958-0
  • Sun, K., & Moreno, R. P. (2020). Chinese Mother-Child Interactions in Everyday Math Activities: Engaging Young Children in Mathematics at Home. Early Childhood Education Journal, 49, 1061-1072. https://doi.org/10.1007/s10643-020-01118-5
  • Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Allyn & Bacon.
  • Tavşancıl, E. (2002). Tutumların ölçülmesi ve SPSS ile veri analizi. Nobel Yayıncılık.
  • Tenenbaum, H. R., & Callanan, M. A. (2008). Parents’ science talk to their children in Mexican-descent families residing in the USA. International Journal of Behavioral Development, 32(1), 1-12. https://doi.org/10.1177/0165025407084046
  • Tenenbaum, H. R., & Leaper, C. (2003). Parent-child conversations about science: Socialization of gender inequities. Developmental Psychology, 39(1), 34-47. https://doi.org/10.1037//0012-1649.39.1.34
  • Ulutaş, A., & Kanak, M. (2018). Effect of the cooperative learning with family involvement based science education on the scientific process skills of 5-6-year-old children. NeuroQuantology, 16(11), 20-29. https://doi.org/10.14704/nq.2018.16.11.1263
  • Vossoughi, S., & Gutiérrez, K. D. (2014). Studying movement, hybridity, and change: Toward a multi-sited sensibility for research on learning across contexts and borders. Teachers College Record, 116(14), 603-632. https://doi.org/10.1177/016146811411601413
  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes (M. Cole, V. John-Steiner, S. Scribner, & E. Souberman, Eds.). Harvard University Press.
  • Yavuz, G., & Doğan, N. (2015). Using velicer’s map test and horn’s parallel analysis for determining component number. Hacettepe University Journal of Education, 30(3), 176-188.
  • Yurdagül, H., & Bayrak, F. (2012). Content validity measures in scale development studies: Comparison of content validity index and kappa statics. Hacettepe University Journal of Education, Special Issue 2, 264-271.