ANAEROBİK ÇÜRÜTÜCÜ SUYUNDAN PİLOT ÖLÇEKLİ AKR SİSTEMİ İLE BİYOLOJİK AZOT GİDERİMİNİN OPTİMİZE EDİLMESİ

Pilot ölçekli tek kademe ardışık kesikli reaktör (AKR) uygulaması ile anaerobik çamur çürütücü süzüntü suyundan (AÇSS) N, P ve organik madde giderimi 2 ve 4 fazlı ve farklı sıralı olarak çalışılmıştır. Biyolojik azot gideriminde kısmi nitrifikasyon ve nitrit üzerinden denitrifikasyon (denitritasyon) prosesleri uygulanmıştır. Azot giderimine etki eden iki sınırlayıcı faktör, amonyum için bikarbonat ve nitrit için basit yapıda organik madde eksikliği olarak oluşmuştur. Nitritasyonla eşzamanlı organik maddenin oksitlenmesi, teorik alkalinite gereksinimini düşürürken oluşan uçucu yağ asitleri (UYA) denitritasyonu desteklememiştir. Fosfat sadece biyosentez amaçlı giderilmiştir. Aerobik oksidasyonda oluşan UYA’nın denitritasyonla gideriminin çok düşük seviyede kalması UYA’nın sistemde oluşan fakültatif bakterilerin tüketebileceğinden daha kompleks yapıda oluştuğunu göstermektedir. Yüksek UYA gideriminin elde edildiği durumda ise AÇSS ile gelen anaerobik bakterilerin etkin olduğu gözlenmiştir. Elde edilen nitritasyon hızları artan amonyum yükleme hızında artış göstermiş ve 20 oC için literatürle uyumlu olarak elde edilmiştir. Çamur yaşı nitrifikasyon için gerekli seviyelerde elde edilmiştir. Sonuçlar, AKR teknolojisi ile kısmi nitrifikasyonun gerçekleşmesi için yüksek sıcaklık ve düşük çamur yaşı ihtiyacı olmadığını göstermiştir.

Optimization of Biological Nitrogen Removal from Anaerobic Reject Water at Pilot-scale SBR System

Anaerobic reject water (ARW) treatment at pilot-scale sequential batch reactor (SBR) was conducted with 2 and 4-phase at mixed order for N, P and organic matter removal. Short-cut biological nitrogen removal (SBNR) process was implemented with partial nitrification and denitrification over nitrite. Bicarbonate and simple structure organic matter defiencies were determined as the two major limiting factors. Simultaneous organic matter oxidation with nitritation reduced theoratical alkalinity requirement whereas volatile fatty acids (VFA) produced did not promote denitritation. Phosphate was removed onyl via biosynthesis. VFA proved to be of complex structure and not amenable for facultative bacteria. In case of high VFA degradation anaerobic bacteria transported with ARW was believed to be efficient. Nitritation rates were competible with the reported values at 20 oC and increased with increasing ammonium loading rate. Sludge age was obtained at an optimum level for nitrification without control. Results showed that high temperature and low sludge age are not necessarily required for partial nitrification at SBR technology.

___

  • Kenneth L. Carper., 2001, Forensic Engineering SE, CRC Press, Washington, D.C., A.B.D.
  • Bilir, Ş., 1995, "Laminar Flow Heat Transfer in Pipes Including Two Dimensional Wall and Fluid Axial Conduction", International Journal of Heat and Mass Transfer, Vol. 38, No. 9, pp. 1619-1625.
  • Anthonisen, A.C., Loehr, R.C., Prakasam, T.B.S., Srinath, E.G., 1976. Inhibition of nitrication by ammonia and nitrous acid. J. Water Pollut. Control Fed. 48 (5), 835–852.
  • Celant De Pra, M., Kunz, A., Bortoli, M., Perondid, T. and Chinia, A., 2012, Simultaneous removal of TOC and TSS in swine wastewater using the partial nitritation process, Journal of Chemical Technology and Biotechnology.
  • Gabarro, J., Ganigue, R., Gich, F., Ruscalleda, M., Balaguer, M.D., Colprim, J., 2012, Effect of temperature on AOB activity of a partial nitritation SBR treating landfill leachate with extremely high nitrogen concentration, Bioresour. Technol., 126, 283–289.
  • A. Gali, J. Dosta, M.C.M. van Loosdrecht, J. Mata-Alvarez, Two ways to achieve an anammox influent from real reject water treatment at lab-scale: Partial SBR nitrification and SHARON process, Process Biochemistry 42 (2007) 715–720.
  • Ganigue, R., Gabarro, J., Sanchez-Melsio, A., Ruscalleda, M., Lopez, H., Vila, X., Colprim, J., Balaguer, M. D., 2009, Long-term operation of a partial nitritation pilot plant treating leachate with extremely high ammonium concentration prior to an anammox process, Bioresource Technology, 100, 5624–5632.
  • Gieseke, A; Bjerrum, L, Wagner, M, Amann, R.2003. Structure and activity of multiple nitrifying bacterial populations co-existing in a biofilm, ENVIRONMENTAL MICROBIOLOGY, Volume: 5, Issue: 5, Pages: 355-369
  • Hellinga C, van Loosdrecht MCM, Heijnen JJ. Model based design of a novel process for Nitrogen Removal from concentrated flows. Math Comput Model Dyn Syst 1999;5:351–71.
  • Ivan Mahne, Alenka Prinčič, France Megušar, Nitrification/denitrification in nitrogen high-strength liquid wastes, Water Research, Volume 30, Issue 9, September 1996, Pages 2107-2111
  • J. Dosta, A. Galı´, T. Benabdallah El-Hadj, S. Mace´, J. Mata- A´lvarez, Operation and model description of a sequencing batch reactor treating reject water for biological nitrogen removal via nitrite, Bioresource Technology 98 (2007) 2065–2075
  • Jetten, M. SM, Wagner M., Fuerst J., van Loosdrecht, M., Kuenen, G., Strous M., 2001, Microbiology and application of the anaerobic ammonium oxidation (anammox) process. Current Opinion in Biotechnology, 12, 283–288.
  • Katarzyna Bernat, Dorota Kulikowska, Magdalena Zielin´ ska, Agnieszka Cydzik-Kwiatkowska, Irena Wojnowska-Baryła, Nitrogen removal from wastewater with a low COD/N ratio at a low oxygen concentration, Bioresource Technology 102 (2011) 4913–4916. LIANG Zhu, LIU Jun-xin, Control factors of partial nitritation for landfill leachate treatment, Journal of Environmental Sciences 19(2007) 523–529.
  • Lo´pez-Palau, S., Dosta, J., Pericas, A. and Mata-A´ lvarez, J., 2011, Partial nitrification of sludge reject water using suspended and granular biomass, Journal of Chemical Technology and Biotechnology, 86, 1480–1487.
  • Metcalf and Eddy, 2003, Wastewater Engineering: Treatment and Reuse, 4th ed., Tchobanoglous, G., Burton, F. L., Stensel, H. D., McGRAW-Hill Companies, Inc., New York, 720-722.
  • Mulder, J. W., Duin, J. O .J., Goverde, J., Poiesz, W. G. , Van Veldhuizen, H. M., Van Kempen, R., Roeleveld, P., 2006, Full-scale experience with the SHARON process through the eyes of the operators, Water Environment Foundation, 5256-5270.
  • Peng, B., Zhu, G., 2006, Biological nitrogen removal with nitrification and denitrification via nitrite pathway, Appl. Microbiol. Biotechnol., 73, 15–26.
  • Singh, M., and Srivastava, R. K., 2011, Sequencing batch reactor technology for biological wastewater treatment: a review, Asia-Pacific Journal of Chemical Engineering, 6, 3–13. Sri Shalini, S., Joseph, K., 2012, Nitrogen management in landfill leachate: application of SHARON, ANAMMOX and combined SHARON–ANAMMOX process, Waste Management, 32, 2385– 2400. STOWA (Dutch Foundation for Applied Water Research), 2006, SHARON and SHARON/ANAMMOX Process Sheets, http://stowa-selectedtechlogies.nl/Sheets/index.html Strous, M., Kuenen, J. G. & Jetten, M., 1999, Key physiological parameters of anaerobic ammonium oxidation, Appl. Microbiol. Biotechnol., 65, 3248 – 3250.
  • Strous, M., van Gerven, E., Kuenen, J. G. & Jetten, M., 1997, Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (Anammox) process in different reactor configurations, Water Res., 31, 1955 – 1962.
  • U.S. Environmental Protection Agency (EPA), 1993, Process Design Manual for Nitrogen Control, Cincinnati, Ohio. Van de Graaf, A.A., Brujin, P.D., Robertson, L.A., Jetten, M.S.M., Kuenen, J.G., 1996, Autotrophic growth of anaerobic ammonium-oxidising micro-organisms in a fluidized bed reactor, Microbiology, 142, 2187–2196.
  • Van Dongen U, Jetten MSM, van Loosdrecht MCM. The SHARONANAMMOX process for treatment of ammonium rich wastewater. Water Sci Technol 2001;44:153–60.
  • Van Hulle, S. WH, Volcke, E. IP, Teruel, J. L., Donckels, B., Van Loosdrecht, M. CM and Vanrolleghem, P. A, 2007, Influence of temperature and pH on the kinetics of the Sharon nitritation process, Journal of Chemical Technology and Biotechnology, 82, 471–480.
  • Van Loosdrecht, M., 2004, Recent development on biological wastewater nitrogen removal technologies, In: Proceedings of the presentation in international conference on wastewater treatment for nutrient removal and reuse (ICWNR’04). Vel M. Vadivelu, Jurg Keller, Zhiguo Yuan, Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacterculture, Water Research, Volume 41, Issue 4, February 2007, Pages 826-834
  • WEF, ASCE, EWRİ, 2005, Biological Nutrient Removal (BNR) Operation in Wastewater Treatment Plants, WEFPRESS, Mc Graw-Hill, USA
  • Yamamoto, T., Wakamatsu, S., Qiao, S., Hira, D., Fujii, T., Furukawa, K., 2011, Partial nitritation and anammox of a livestock manure digester liquor and analysis of its microbial community, Bioresource Technology, 102, 2342–2347.
  • Yilmaz, G., Lemaire, R., Keller, J., Yuan, Z., 2008, Simultaneous Nitrification, Denitrification,and Phosphorus Removal From Nutrient-Rich Industrial Wastewater Using Granular Sludge, Biotechnology and Bioengineering, 100 (3), 529-541.
  • Zeng, R. J., Lemaire, R., Yuan, Z., Keller, J., 2003, Simultaneous Nitrification, Denitrification and Phosphorus Removal in a Lab-Scale Sequencing Batch Reactor, Biotechnology and Bioengineering, 84 (2), 170-178.