NİKEL MANGANİT ESASLI NTC TERMİSTÖRLERİN ELEKTRİKSEL ÖZELLİKLERİNE 0.15 VE 0.30 MOL CuO KATKISININ ETKİSİ

Endüstriyel uygulamalarda sıcaklık sensörü olarak kullanılan NTC termistörün karakteristiközelliği, sıcaklığın artmasıyla elektriksel direncinin azalmasıdır. Nikel manganit, NTC termistörleruygulamalarında ana kompozisyonlardan biri olarak kullanılmaktadır. Nikel manganit esaslı NTCtermistörlerin elektriksel özellikleri, kobalt oksit, demir oksit, krom oksit ve bakır oksit gibi katkımaddelerinin ilavesiyle değiştirilir. Bu çalışmada bakır oksit katkısının nikel manganit esaslı NTCtermistörlerin elektriksel ve mikroyapı özelliklerine etkisi araştırılmıştır. Bu amaçla Ni0.5 Co0.5 CuxMn2-xO4 (x=0.15 ve 0.30) stokiometrisine uygun numuneler klasik seramik üretim yöntemi kullanılaraküretilmiştir. Numuneler 1300 ˚C'de 5 saat sinterlenmiştir. Numunelerin göreceli yığın yoğunluklarınınyaklaşık % 97 olduğu belirlenmiştir. Ni0.5 Co0.5 Cu0.15Mn1.85 O4 numunesi için elektriksel özdirenç (ρ) vemalzeme sabiti ( B) sırasıyla 286 Ω.cm ve 3355 K olarak bulunmuştur. CuO katkı miktarınınartırılmasıyla ise elektriksel özdirenç ve malzeme sabiti değerlerinin azaldığı saptanmıştır. Ni0.5 Co0.5Cu0.3Mn1.7 O4 kompozisyonuna ait 1300 ˚C’de sinterlenen numunenin elektriksel özdirenç ve malzemesabiti değerlerinin 61 Ω.cm ve 3124 K olduğu bulunmuştur.

The Effect of 0.15 and 0.30 mol CuO Additions on the Electrical Properties of Nickel Manganite-based NTC Thermistors

A decrease in electrical resistance with increasing temperature is the characteristic featureof NTC thermistor utilized as temperature sensors in industrial applications. Nickel manganite is usedas one of the main compositions for application of NTC thermistors. The electrical properties ofnickel manganite based NTC thermistors are altered by the addition of additives such as cobalt oxide,iron oxide, chromium oxide and copper oxide etc. In this study; the effect of copper oxide addition onthe electrical and microstructure properties of nickel manganite based NTC thermistors wereinvestigated. For this purpose, Ni0.5 Co0.5CuxMn2-xO4 (x=0.15 and 0.30) samples were prepared byconventional ceramic processing techniques. The samples were sintered at 1300 ˚C for 5 hours. Theaddition of CuO plays an important role by increasing the bulk density, improving the microstructureproperties and enhancing the electrical characteristics of NTC thermistors. It was determined thatthe relative bulk density of samples was ~97 %. The electrical resistivity (ρ) and material constant ( B )of Ni0.5 Co0.5 Cu0.15Mn1.85O4 sample were determined as 286 Ω.cm and 3355 K. The values of electricalresistivity and material constant decreased with increasing CuO content. The electrical resistivity andmaterial constant of Ni0.5Co0.5Cu0.3Mn1.7O4 sample were calculated as 61 Ω.cm and 3124 K.

___

  • Akash, B.A., Mamlook, R., Mohsen, S. M., 1999, “Multi-Criteria Selection of Electric Power Plants Using Analytical Hierarchy Process”, Electric Power Systems Research, Vol. 52, No. 1, pp. 29-35.
  • Bengisu, M. 2001, Engineering Ceramics, Springer-Verlag, Berlin Heidelberg, Germany, 629 pp.
  • Elbadraoui, E., Baudour, J.L., Bouree, F., Gillot, B., Fritsch, S., Rousset, A., 1997, “Cation Distribution and Mechanism of Electrical Conduction in Nickel-Copper Manganite Spinels”, Solid State Ionics, Vol. 93, pp. 219-225.
  • Fang, D., Chena, C., Winnubst, AJA., 2008, “Preparation and Electrical Properties of FexCu0.10 Ni0.66 Mn2.24−xO4 (0 ≤ x ≤ 0.90) NTC Ceramics”, Journal of Alloys and Compounds, Vol. 454, pp. 286-291.
  • Feteira, A., 2009. “Negative Temperature Coefficient Resistance (NTCR) Ceramic Thermistors: An Industrial Perspective”, Journal of the American Ceramic Society, Vol. 92 (5), pp. 967-983.
  • Gao, H., Ma, C., Sun, B., 2014, “ Preparation and Characterization of NiMn2 O4 Negative Temperature Coefficient Ceramics by Solid-State Coordination Reaction”, Journal of Materials Science: Materials in Electronics, Vol. 25 (9), pp. 3990-3995.
  • Jadhav, R.N., Puri, V., 2010, “ Influence of Copper Substitution on Structural, Electrical and Dielectric Properties of Ni(1−x) CuxMn2 O4 (0 ≤ x ≤ 1) Ceramics”, Journal of Alloys and Compounds, Vol. 507 (1), pp. 151-156.
  • Jadhav, R.N., Mathad, S.N., Puri, V., 2012, “Studies on The Properties of Ni0.6 Cu0.4Mn2 O4 NTC Ceramic due to Fe Doping”, Ceramics International, Vol 38 (6), pp. 5181-5188.
  • Kong, W., Chen, L., Gao, B., Zhang, B., Zhao, P., Ji, G., Chang, A., Jiang, C., 2014, “ Fabrication and Properties of Mn1.56 Co0.96 Ni0.48 O4 Free-standing Ultrathin Chips”, Ceramics International, Vol 40, pp. 8405– 8409.
  • Li, J., Songping, W., Xiaohong, D., Jing, N., 2009, “ZnTiO3 -Based Ceramics Sintered at Low Temperature with Boron Addition for Multilayer Ceramic Capacitor Applications”, Journal of Materials Science: Materials in Electronics, Vol. 20(12), pp. 1186-1192.
  • Li, D-F., Zhao, S-X., Xiong, K., Bao, H-Q., Nan, C-W., 2014, “Aging Improvement in Cucontaining NTC Ceramics Prepared by Co-precipitation Method”, Journal of Alloys and Compounds., Vol. 582, pp. 283-288.
  • Ma, C., Liu, Y., Lu, Y., Gao, H., Qian, H., Ding, J., 2013, “Preparation and Characterization of Ni0.6 Mn2.4 O4 NTC Ceramics by Solid-state Coordination Reaction”, Journal of Materials Science: Materials in Electronics, Vol 24 (12), pp. 5183-5188.
  • Macklen, E.D., 1979, Thermistors, Electrochemical Publications Limited, Scotland, pp. 236
  • Muralidharan, M.N., Rohini, P.R., Sunny, E.K., Dayas, K.R., Seema, A., 2012, “Effect of Cu and Fe Addition on Electrical Properties of Ni–Mn–Co–O NTC Thermistor Compositions”, Ceramics International, Vol 38 (8), pp. 6481-6486.
  • Ngamjarurojana, A., 2009, “Effect of Addition of CuO and Bi2O3 on Low Temperature Sintering of Pb(Zr,Ti)O3 -PbZn1/3 Nb2/3O3 -Pb(Ni1/3 Nb2/3 )O3 Based Ceramics”, Chiang Mai Journal Of Science, Vol 36. (1), pp. 50-58.
  • Park, K., 2005, “Fabrication and Electrical Properties of Mn–Ni–Co–Cu–Si Oxides Negative Temperature Coefficient Thermistors, Journal of the American Ceramic Society, Vol. 88 (4), pp. 862–866.
  • Park, K., Lee, J.K., 2007, “Mn–Ni–Co–Cu–Zn–O NTC Thermistors with High Thermal Stability for Low Resistance Applications”, Scripta Materialia, Vol. 57, pp. 329–332.
  • Park, K. Lee, J.K., 2009, “The Effect of ZnO Content and Sintering Temperature on The Electrical Properties of Cu-containing Mn1.95-xNi0.45Co0.15Cu0.45ZnxO4 (0 ≤ x ≤ 0.3) NTC Thermistors”, Journal of Alloys and Compounds, Vol. 475, pp. 513-517.
  • Suzuki, M., 1980, “A.C. Hopping Conduction in Mn-Co-Ni-Cu Complex Oxide Semiconductors with Spinel Structure”, Journal of Physics and Chemistry of Solids, Vol. 41 (11), pp. 1253-1260.
  • Takao, H., Saito, Y., Aoki, Y., Horibuchi, K., 2006, “Microstructural Evolution of Crystalline-Oriented (K0.5 Na0.5 )NbO3 Piezoelectric Ceramics with a Sintering Aid of CuO”, Journal of the American Ceramic Societ, Vol. 89 (6), pp. 1951-1956.
  • Tsai, C.C., Chu, S.Y., Lu, C.H., 2009, “Doping Effects of CuO Additives on The Properties of Low-Temperature- Sintered PMnN-PZT-based Piezoelectric Ceramics and Their Applications on Surface Acoustic Wave Devices”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 56 (3), pp. 660-668.
  • Wang, L., Mao, C., Wang, G., Du, G., Liang, R., Dong, X., 2013, “Effect of CuO Addition on The Microstructure and Electric Properties of Low-Temperature Sintered 0.25PMN-0.40PT-0.35PZ Ceramics”, Journal of the American Ceramic Society, Vol. 96, pp. 24-27.
  • Xiong, K., Zhao, S., Li, D., Bao, H., Nan, C., 2014, “Structure and Electrical Performance of Mn1.5-0.5xCo0.9- 0.3xNi0.6-0.2xCux O4 NTC Ceramics Prepared by Heterogeneous Precipitation”, Journal of Alloys and Compounds, Vol. 606, pp. 273-277.
  • Zhao, C., Wang, B., Yang, P., Winnubst, L., Chen C., 2008, “Effects of Cu and Zn Co-doping on The Electrical Properties of Ni0.5Mn2.5O4 NTC Ceramics”, Journal of the European Ceramic Society, Vol. 28, pp. 35-40.