Atık Sularda Mikrokirletici Giderimi İçin Alternatif Arıtımlar
Mikro kirleticilerin sucul ortamlarda bulunması hem canlılar hem de çevre için endişe verici birçevre sorunu haline gelmiştir. Hızla ortaya çıkan/gelişen kirleticiler olarak da adlandırılan mikrokirleticiler doğal maddelerden ve giderek artan çeşitli antropojenik olaylardan meydana gelmektedir.Mikrokirleticiler farmasötikler, kişisel bakım ürünleri, steroid hormonlar, endüstriyel kimyasallar,pestisitler, poliaromatik hidrokarbonlar ve son zamanlarda görülen diğer bileşiklerden oluşmaktadır. Bukirleticiler farklı su kaynaklarında genellikle birkaç ng /L ile μg/ L arasında değişen çok düşük konsantrasyonlarda bulunmaktadır. Dünyadaki mevcut birçok Atıksu Arıtma Tesisi (AAT) özelliklemikro kirleticileri gidermek için tasarlanmamıştır. Mikro kirleticilerin düşük konsantrasyondabulunmaları ve çok çeşitli olmaları arıtma prosesleri boyunca belirleme ve analiz prosedürlerinizorlaştırmaktadır. Ayrıca, mikro kirleticilerin AAT’lerine sürekli olarak gelmeleri ve birçok mikrokirleticinin kararlı yapıya sahip olması bu kirleticilerin yeteri kadar giderilmesini zorlaştırmaktadır. Busebeple, mikro kirleticilerin birçoğu bilinmeyen konsantrasyonları ile beraber AAT’lerinden suculçevrelere geçmektedir. Sucul ortamlarda ciddi seviyelerde mikro kirletici oluşumları kısa vadeli ve uzunvadeli toksisiteyi de içeren endokrin bozucu etkiler gibi bir dizi olumsuz etkiler ile beraber suculekosistemleri bozmaktadır. Olumsuz etkileri bilinen mikro kirleticilerin yanı sıra canlı organizmalarüzerindeki etkileri hala bilinmeyen çok sayıda mikro kirletici de vardır. Sonuç olarak bu kirleticileringiderimi, hem çevresel ekosistemlerin hem de insan sağlığının korunması için büyük bir önemtaşımaktadır. Mikro kirleticilerin gideriminde klasik yöntemlerin yetersiz olduğu göz önündebulundurulursa daha iyi giderim verimleri için koagülasyon – flokülasyon, aktif karbon adsorpsiyonu(toz aktif karbon ve granül aktif karbon), ileri oksidasyon prosesleri (İOP), membran prosesleri vemembran biyoreaktörü içeren diğer alternatif arıtma yöntemleri uygulanabilir.Bu çalışmada; alternatif arıtma yöntemleri ve her bir arıtma yönteminin farklı mikro kirleticilerüzerindeki giderim verimleri araştırılarak, bütün alternatif arıtım yöntemleri mikro kirletici giderimverimleri bakımından birbirleri ile kıyaslanmıştır.
TREATMENT ALTERNATIVES FOR MICROPOLLUTANT REMOVAL IN WASTEWATER
Present of micropollutants in aquatic environments has become an alarmingenvironmental problem for both living creatures and environment. Micropollutants, also called asemerging contaminants arise from natural substances and increasing variety of anthropogenic events.Micropollutants consist of pharmaceuticals, personal care products, steroid hormones, industrialchemicals, pesticides, polyaromatic hydrocarbons and other recently seen compounds. These emergingcontaminants are commonly found in very low concentration in different water bodies ranging from afew ng/l to several μg/l.Many existing Wastewater Treatment Plants (WWTPs) in all over the world are not especially designedfor removing micropollutants. Low concentration and diversity of micropollutants complicate thededection and analysis procedures during the treatment processes. Furthermore, enteringmicropollutants to the WWTPs continuously and stable structure of many micropollutants makedifficult to eliminate these emerging compounds sufficiently. Therefore, many micropollutants ofunknown concentration pass to aquatic environment from WWTPs. The occurence of micropollutantswith a significant levels in aquatic environments disrupt the aquatic ecosystems with a number ofadverse effects including short-term and long-term toxicity such as endocrine disrupting effects. Besidesthe known negative effects of micropollutants there are great number of micropollutants whose effectson living organisms are still unknown. As a result, removing these compounds is of a great importanceboth to protect environmental ecosystem and human health. Considering that the conventional methodsare insufficient for removing the micropollutants other alternative treatment methods includingcoagulation–flocculation, activated carbon adsorption (powdered activated carbon and granularactivated carbon), advanced oxidation processes (AOPs), membrane processes and membrane bioreactorcan be applied for better removal.In this study, alternative treatments methods and removal efficiencies of each treatment methods ondifferent micropollutants were investigated and all alternative treatment methods were comparedbetween each other in terms of micropollutant removal rates.
___
- Alexander, J.T., Hai, F.I., Al-aboud, T.M.., 2012, “Chemical Coagulation-Based Processes for Trace
Organic Contaminant Removal: Current State And Future Potential” Journal of
Environmental Management, Vol. 111, pp. 195–207.
- Asakura, H., Matsuto T., 2009, “ Experimental Study of Behavior of Endocrine-Disrupting Chemicals in
Leachate Treatment Process and Evaluation of Removal Efficiency”, Waste Management, Vol.
29, pp.1852–1859.
- Beier, S., Cramer, C., Koster, S., Mauer, C., Palmowski, L., Schroder, H., et al., 2011, “Full Scale
Membrane Bioreactor Treatment of Hospital Wastewater as Forerunner for Hot-spot
Wastewater Treatment Solutions in High Density Urban Areas”, Water Science and
Technology, Vol. 63 (1), pp. 66–71.
- Boehler, M., Zwickenpflug, B., Hollender, J., Ternes, T., Joss, A., Siegrist, H., 2012, “Removal of
Micropollutants in Municipal Wastewater Treatment Plants by Powder-Activated Carbon”,
Water Science and Technology Vol., 66, pp. 2115–2121.
- Bolong, N., Ismail, A.F., Salim, M.R., Matsuura, T., 2009, “ A Review of The Effects of Emerging
Contaminants in Wastewater and Options for Their Removal”, Desalination, Vol. 239, pp. 229–
46.
- Choi, K.J., Kim S.G., Kim S.H., 2008, “Removal of Antibiotics by Coagulation and Granular Activated
Carbon Filtration”, Journal of Hazardous Materials, Vol. 151, pp. 38–43.
- Fent, K., Weston, A.A, Carminada, D., 2006, “Ecotoxicology of Human Pharmaceuticals”, Aquatic
Toxicology , Vol. 76 (2), pp. 122–159.
- Garcia, N., Moreno, J., Cartmell, E., Rodriguez-Roda, I., Judd, S., 2013, “The Application of
Microfiltration-Reverse Osmosis/Nanofiltration to Trace Organics Removal for Municipal
Wastewater Reuse” Environmental Technology, Vol. 34 (24), pp. 3183–3189.
- Gerrity, D., Gamage, S., Holady, J.C., Mawhinney, D.B., Quinones, O., Trenholm, R.A., et al., 2011,
“Pilot-scale Evaluation of Ozone and Biological Activated Carbon for Trace Organic
Contaminant Mitigation and Disinfection”, Water Research, Vol. 45 (5), pp. 2155–2165.
- Grover, D.P., Zhou, J.L., Frickers, P.E., Readman, J.W., 2011, “Improved Removal of Estrogenic and
Pharmaceutical Compounds in Sewage Effluent by Full Scale Granular Activated Carbon:
Iimpact on Receiving River Water”, Journal of Hazardous Materials, Vol. 185 (2), pp. 1005–
1011.
- Hern{ndez-Leal, L., Temmink, H., Zeeman, G., Buisman, C.J.N., 2011, “Removal of Micropollutants from
Aerobically Treated Grey Water via Ozone and Activated Carbon”, Water Research, Vol. 45 (9),
pp. 2887–2896.
- Hollender, J., Zimmermann, S.G., Koepke, S., Krauss, M., McArdell, C.S., Ort, C., et al., 2009,
“Elimination of Organic Micropollutants in a Municipal Wastewater Treatment Plant
Upgraded with a Full-scale Post-ozonation Followed by Sand Filtration”, Environmental
Science & Technology, Vol. 43 (20), pp. 7862–7869.
- Jermann, D., Pronk, W., Boller, M., Schäfer, A.I., 2009, “The Role of NOM Fouling for The Retention of
Estradiol and Ibuprofen During Ultrafiltration”, Journal of Membrane Science, Vol. 329, pp.
75–84.
- Kim, I., Yamashita, N., Tanaka, H., 2009, “ Performance of UV and UV/H2O2 Processes for The Removal
of Pharmaceuticals Detected in Secondary Effluent of a Sewage Treatment Plant in Japan”,
Journal of Hazardous Materials, Vol. 166 (2), pp. 1134–1140.
- Kovalova, L., Siegrist, H., Singer, H., Wittmer, A., McArdell, C.S., 2012, “Hospital Wastewater Treatment
by Membrane Bioreactor: Performance and Efficiency for Organic Micropollutant Elimination”,
Environmental Science & Technology, Vol. 46 (3), pp. 1536–1545.
- Kovalova, L., Siegrist, H., von Gunten, U., Eugster, J., Hagenbuch, M., Wittmer, A., et al., 2013,
“Elimination of Micropollutants During Post-Treatment of Hospital Wastewater with
Powdered Activated Carbon, Ozone, and UV”, Environmental Science & Technology, Vol. 47
(149, pp. 7899–7908.
- Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., Wang Xiaochang C., 2014, “A
Review on The Occurrence of Micropollutants in The Aquatic Environment and Their Fate and
Removal During Wastewater Treatment”, Science of the Total Environment, Vol. 473–474, pp.
619–641.
- Matamoros, V., Salvadó, V., 2013, “Evaluation of a Coagulation/flocculation-lamellar Clarifier and
Filtration-UV-chlorination Reactor for Removing Emerging Contaminants at Full-scale Wastewater Treatment Plants in Spain”, Journal of Environmental Management, Vol. 117, pp.
96–102.
- Ngo, H., Guo,W., Vigneswaran, S., Chapter 8:Membrane Processes Forwater Reclamation and Reuse. In:
Zhang, T.C., Surampalli, R.Y., Vigneswaran, S., Tyagi, R.D., Ong, S.L., Kao, C.M., editors. 2012,
“Membrane Technology and Environmental Applications”, USA: American Society of Civil
Engineers (ASCE). pp. 239–75.
- Pruden, A., Pei, R., Storteboom, H., Carlson, K.H., 2006, “Antibiotic Resistance Genes as Emerging
Contaminants: Studies in Northern Colorado”, Environmental Science & Technology, Vol. 40
(23), pp. 7445–7450.
- Radjenovic, J., Petrovic, M., Barceló, D., 2009, “Fate and Distribution of Pharmaceuticals in Waste-Water
and Sewage Sludge of The Conventional Activated Sludge (CAS) and Advanced Membrane
Bioreactor (MBR) Treatment”, Water Research, Vol. 43 (3), pp. 831–841.
- Radjenovic, J., Petrovic, M., Barceló, D., 2007, “Analysis of Pharmaceuticals in Wastewater and Removal
Using a Membrane Bioreactor”, Analytical and Bioanalytical Chemistry, Vol. 387 (4), pp.
1365–1377.
- Reungoat, J., Escher, B.I., Macova, M., Keller, J., 2011, “Biofiltration of Wastewater Treatment Plant
Effluent: Effective Removal of Pharmaceuticals and Personal Care Products and Reduction of
Toxicity”, Water Research, Vol. 45 (9), pp. 2751–2762.
- Roh, H., Subramanya, N., Zhao, F., Yu, C.P, Sandt, J., Chu, K-H., 2009, “Biodegradation Potential of
Wastewater Micropollutants by Ammonia-Oxidizing Bacteria”, Chemosphere, Vol. 77 (8), pp.
1084–1089.
- Rossner, A., Snyder, S.A., Knappe, D.R.U., 2009, “Removal of Emerging Contaminants of Concern by
Alternative Adsorbents”, Water Research, 43 (15), pp. 3787–3796.
- Schäfer, A.I., Akanyeti, I., Semião, A.J.C., 2011, “Micropollutant Sorption to Membrane Polymers: a
Review of Mechanisms for Estrogens”, Advances in Colloid and Interface Science, Vol. 164,
pp. 100–117.
- Snyder, S.A., Adham, S., Redding, A.M., Cannon, F.S., DeCarolis, J., Oppenheimer, J., et al., 2007, “Role
of Membranes and Activated Carbon in The Removal of Endocrine Disruptors and
Pharmaceuticals”, Desalination, Vol. 202, pp. 156–181.
- Su{rez, S., Lema, J.M., Omil, F., 2009, “Pre-treatment of Hospital Wastewater by Coagulation–
Flocculation and Flotation”, Bioresource Technology, Vol. 100 (7), pp. 2138–2146.
- Sui, Q., Huang, J., Deng, S., Yu, G., Fan, Q., 2010, “Occurrence and Removal of Pharmaceuticals,
Caffeine and DEET in Wastewater Treatment Plants of Beijing, China”, Water Research, Vol.
44 (2), pp. 417–426.
- Thuy, P.T., Moons, K., Van Dijk, J.C., Viet Anh, N., Van der Bruggen, B., 2008, “To What Extent are
Pesticides Removed from Surface Water During Coagulation–Flocculation”, Water and
Environment Journal, Vol. 22 (3), pp. 217–223.
- Trinh, T., van den Akker, B., Stuetz, R.M., Coleman, H.M., Le-Clech, P., Khan, S.J., 2012,.”Removal of
trace organic chemical contaminants by a membrane bioreactor”, Water Science and
Technology, Vol. 66 (9), pp. 1856–1863.
- Verlicchi, P., Galletti, A., Petrovic, M., Barceló, D., 2010, “Hospital Effluents as a Source of Emerging
Pollutants: an Overview of Micropollutants and Sustainable Treatment Options”, Journal of
Hydrology,Vol. 389 (3), pp. 416–428.
- Vieno, N., Tuhkanen, T., Kronberg, L., 2006, “Removal of Pharmaceuticals in Drinking Water
Treatment: Effect of Chemical Coagulation”, Environmental Technology,Vol. 27 (2), pp. 183–
192.
- Westerhoff, P., Yoon, Y., Snyder, S., Wert, E., 2005, “Fate of Endocrine-disruptor, Pharmaceutical, and
Personal Care Product Chemicals During Simulated Drinking Water Treatment Processes”,
Environmental Science & Technology, Vol. 39 (17), pp. 6649–6663.
- Yangali-Quintanilla, V., Maeng, S.K., Fujioka, T., Kennedy, M., Li, Z., Amy, G., 2011, “Nanofiltration vs.
Reverse Osmosis for The Removal of Emerging Organic Contaminants in Water Reuse”,
Desalination and Water Treatment, Vol. 34, pp. 50–56.