Farklı duvar örgüleri ile üretilmiş prototip yığma binaların sarsma tablası deneyleri

Deprem nedeniyle meydana gelen en büyük hasarlar, duvar düzleminde kesme ve kayma çatlaklarının oluşması, duvarların düzlem-dışı dışı hareket etmesi, duvarların köşelerden ve döşemelerden ayrılmasıdır. Bu çalışmada, 1/6 ölçekli, tek katlı ve üç bölmeli farklı duvar örgüleri üretilmiş prototip yığma yapılar sarsma tablası üzerinde test edilmiştir. Bu prototip yığma yapılar sinüzoidal dinamik test ile sarsma tablasında test edilmiştir. Test numunelerinin duvarları sırasıyla haç, flamen, ingiliz ve hollanda tip örgüler ile üretilmiştir. Test numunelerinin davranışları, elastik sismik yükleri ve deplasmanları kıyaslayabilmek için numunelere aynı yer hareketi verilmiştir. Test numunelerinin yer değiştirme ölçümleri görüntü işleme yöntemi ile yapılmış ve ivme değerleri ivmeölçerler ile ölçülmüştür. Deneysel çalışmalarda deprem sırasında gözlemlenen, farklı tipte göçme modları ve çatlaklar meydana gelmiştir. Sallama tablasında, Numune 4'te (hollanda örgü) maksimum elastik sismik yük oluşmuştur. Numune 1 (haç örgü) diğer örneklere göre deneylerde daha rijit davrandığından dolayı, numune 1 en yüksek sismik performansı ulaşmıştır. Sonuç olarak, özenle imal edilmeyen ve mühendislik hizmeti almayan tüm yığma yapılar, örgü türü ne olursa olsun yeterli deprem performansı gösteremez. TBSC-2018'de belirtilen yığma binalarda kapı ve pencere kenarlarına düşey lentolar yapılabilir veya kapı ve pencere boşlukları küçültülebilir, bu da sismik performansına önemli katkı sağlayabilir.

SHAKING TABLE EXPERIMENTS ON MASONRY BUILDING PROTOTYPES PRODUCED WITH DIFFERENT BOND

The major damages that occurred due to the earthquake are the formation of shear cracks and sliding cracks in the plane of the walls, the overturning of the walls out-of-plane, the separation of the walls from the corners and slabs. In this study, prototype masonry buildings were produced with different bonds 1/6 geometric scale, one story and three-compartment were tested on the shaking table. These prototype masonry buildings were tested on a shaking table with sinusoidal dynamic testing. The walls of test specimens were produced with the cross, the flemish, the english, and the dutch bond, respectively. The behaviour of test specimens, displacement, elastic seismic loads were compared by giving the same ground motion to the specimens. Displacement measurements of the test specimens were made by the image processing method and acceleration data were measured by accelerometers. In the experimental studies, different types of failure modes and cracks that could occur during the earthquake were observed. In the shaking table, the maximum elastic seismic load has occurred at Specimen 4 (dutch bond). Because Specimen 1 had more rigid compared to the other specimens, Specimen 1 with cross bond also occurred the highest seismic performance. As a result, all masonry structures that are not carefully manufactured and do not receive engineering services, regardless of the type of the bond, cannot exhibit sufficient earthquake performance. As a result, for the masonry buildings stated in TBSC-2018, vertical lintels can be made on the sides of the door and windows, or the door and window spaces can be made smaller, which can make an important contribution to the seismic performance of masonry buildings.

___

  • Arya, Anand S., Teddy Boen, and Yuji Ishiyama (2014). Guidelines for earthquake resistant non- engineered construction. UNESCO, 2014.
  • ADXL345 Evaluation Board (2009), https://www.sparkfun.com/datasheets/Sensors/Accelerometer/ADXL345.pdf, 2009.
  • Bahadir F., Balik F.S., (2015). “Seismic Performance Improvement of 3D Reinforced Concrete Frames with Different Strengthening Applications “, Applied Mechanics and Materials Manufacturing Science and Technology VI Chapter: 8 Civil Engineering, 789-790, 1140-1144. doi: 10.4028/www.scientific.net/AMM.789-790.1140.
  • Bahadir, Fatih, and Fatih Süleyman Balik (2018). "Behaviour of 3D RC frames placed at different angles on shaking table." Građevinar70.03. (2018): 171-186. https://doi.org/10.14256/JCE.1655.2016.
  • Bahadir, F., (2019-06-07) "Behaviour of Prototype Masonry Buildings Produced with Different Bond on the Shaking Table “. DesignSafe-CI. https://doi.org/10.17603/ds2-fm59-xa94.
  • Bahadir F. (2020). “Experimental study on three-dimensional reinforced concrete frames subjected to dynamic loading”. Structures (24). pp. 835-850 Elsevier. 2020. https://doi.org/10.1016/j.istruc.2020.01.045.
  • Balendra, T. (1993). “Vibration of Buildings to Wind and Earthquake Loads”. Springer-Verlag London.1993. ISBN:978-1-4471-2055-1. doi: 10.1007/978-1-4471-2055-1.
  • Başaran, H., Demir, A., Bağcı, M., & Ercan, E. (2014). Shaking table study of masonry buildings with reinforced plaster. doi:10.14256/JCE.1036.2014, pp.625-633, 2014.
  • Ersubasi, F., & Korkmaz, H. H. (2010). “Shaking table tests on strengthening of masonry structures against earthquake hazard.” Natural Hazards and Earth System Sciences, 10(6), 1209. doi:10.5194/nhess- 10-1209-2010, 2010.
  • Hanazato, T., Minowa, C., Narafu, T., Imai, H., Ali, Q., Kobayashi, K., Nakagawa, T. (2008). “Shaking Table Test of Model House of Brick Masonry for Seismic Construction”. In Proceedings of 14th World Conference of Earthquake Engineering (14WCEE).
  • Harris, Harry G., and Gajanan Sabnis (1999). Structural modeling and experimental techniques. CRC press.1999 Image Pro, https://mediacy.com/imageproplus.
  • Kamanli, M., & Balik, F. S. (2010). “The behaviour of roof gable walls under the effect of earthquake load”. Natural Hazards and Earth System Sciences, 10(2), 251-263.doi:10.5194/nhess-10-251-2010, 2010.
  • Labjack U3-HV (2015), https://labjack.com/support/datasheets/u3, 2015.
  • Leite, J. C., & Lourenco, P. B. (2012). “Solutions for infilled masonry buildings: shaking table tests”. In 15th International Brick and Block Masonry Conference (pp. 1-10). Universidade Federal de Santa Catarina (UFSC).
  • Rao K. N., Ramesh Babu R. (2012). “Assessment of Seismic Performance of Reinforced SMB Masonry Building Models through Shock Table and Shaking Table Tests “, CiSTUP Indian Institute of Science, Bangalore.
  • Saito T., Moya L., Fajardo C., and Morita K. (2013). “Experimental Study on Dynamic Behavior of Unreinforced Masonry Walls “, Journal of Disaster Research, 8(2).
  • Stephen, R. M., Bouwkamp, J. G., Clough, R. W., & Penzien, J. (1969). “Structural Dynamic Testing Facilities at the University of California, Berkeley”. Earthquake Engineering Research Center, College of Engineering, University of California.
  • Sullivan, T. J., Pinho, R., Pavese, A. (2004), “An Introduction to Structural Testing Techniques”. Earthquake Engineering Research Report Rose School, 1.
  • Turer, A., Korkmaz, S. Z., & Korkmaz, H. H. (2007). “Performance improvement studies of masonry houses using elastic post‐tensioning straps”. Earthquake Engineering & Structural Dynamics, 36(5), 683-705.
  • Turkish Building Seismic Code (2018) (Ankara: Prime Ministry, Disaster and Emergency Management Presidency (AFAD)) 2018.
  • Zimmermann, Thomas, and Alfred Strauss (2012). "Masonry and Earthquakes: Material properties, Experimental testing and Design approaches." Earthquake-Resistant Structures-Design, Assessment and Rehabilitation. InTech, 2012.