Fat Mass and Obesity Associated (FTO) Protein Ekspresyonunun Neden Olduğu SH-SY5Y Hücrelerinin Proteomunda Meydana Gelen Değişiklikler, FTO Proteininin Çok Yönlü Özellikleri Ortaya Çıkarır

Amaç: Fat mass and obesity associated (FTO) proteini postranskripsiyonel modifikasyonlar, DNA tamiri ve yağ asidi metabolizması gibi çeşitli hücresel işlevlerde rol oynayan bir RNA dematilazdır. Başlangıçta obesite ile yakından ilişkilendirilen FTO proteininin daha sonraki çalışmalarla nörolojik hastalıklar ve çeşitli kanser türleri ile ilişkili olduğu gösterilmiştir. Bu çalışmanın amacı SH-SY5Y hücrelerinde FTO geninin ekzonik R316Q mutasyonunun çözünür proteom üzerindeki etkilerini araştırmaktır.Yöntem: İki boyutlu Difference Gel Electrophoresis (2D-DIGE) deneylerinde, Tet promotörün kontrolü altında yabanıl (WT) veya mutant FTO proteinlerini stabil şekilde eksprese eden SH-SY5Y hücreleri kullanılmıştır. 2-kat regülasyon kriterine göre WT ve mutant FTO proteinini fazla eksprese eden örneklerde 500’den fazla protein spotu karşılaştırılmış ve ekspresyonlarında değişiklik görülen protein-spotları jellerden kesilerek MALDI-TOF/TOF ile tanımlanmıştır.Bulgular: Genel olarak, WT ve mutant FTO ifadesi çözünür proteomda büyük değişikliklere neden olmamıştır. Ancak, altı protein noktasında bazı küçük değişiklikler gözlemledik. Bu protein noktalarının üçü Hsp70'e aitti ve mutant FTO eksprese eden hücrelerde daha fazla eksprese idi. Bu, Hsp70'in yalnızca fazla eksprese olduğunu değil, aynı zamanda translasyon sonrası değişikliğe uğradığını da gösterir. İfadesi regüle edilen diğer proteinler fosfogliserat kinaz-1 (PGK1), kalmodulin ve keratindir.Sonuç: Bu sonuçlar FTO’nun enerji metabolizması ile ilişkisinin yanı sıra hücresel strese cevabı indükleyebileceğinin bir göstergesi olabilir. Ek olarak, FTO Wnt sinyal iletim yolağını etkiyelebilir. Genel olarak, çalışmamız FTO'nun çok yönlü özelliklerini vurgulamış ve nöroblastom hücrelerinin proteomunda meydana gelen değişiklikleri yansıtmıştır.

Changes Occurring in the Proteome of SH-SY5Y Cells Caused by Fat Mass and Obesity Associated (FTO) Protein Expression Reveals Multifaceted Properties of the FTO Protein

Objective: Fat mass and obesity associated (FTO) protein is an RNA-demethylase which is employed in various metabolic functions such as post-transcriptional modifications, DNA repair and fatty acid utilization. Fat mass and obesity associated protein was initially found to be closely associated with obesity and increased body-mass-index and later studies have established association of FTO with neurological diseases and cancer. The aim of this study was to investigate the effect of R316Q FTO mutation on soluble proteome in SH-SY5Y cells.Methods: SH-SY5Y cells stably expressing the wild-type (WT) and the mutant FTO proteins under the control of Tet-promoter were used to study changes in overall proteome using two-dimentional Difference Gel Electrophoresis approach. More than 500 protein spots were compared in samples that overexpressed the WT-FTO or the mutant-FTO protein according to 2-fold-criteria. Spots displaying differences were cut from the gels and identified by MALDI-TOF/TOF. Results: In overall, the expression of neither the WT nor the mutant FTO caused major changes in the soluble proteome. However, we observed some minor changes in six protein spots. Three of those protein spots belonged to Hsp70 and were up-regulated in the mutant-FTO-expressing cells. This indicated that Hsp70 was not only up-regulated but also post-translationally modified. The other proteins regulated were phosphoglycerate kinase-1, calmodulin and keratin. Conclusion: These results indicated that FTO appear to be associated with energy metabolism and might induce the cellular stress. In addition, FTO might affect to the Wnt signalling pathway. In overall, our study highlighted the multifaceted properties of the FTO and reflected onto the changes occurring in the proteome of neuroblastoma cells. 

___

  • Gerken T, Girard CA, Tung YC, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 2007;318:1469-1472.
  • Sanchez-Pulido L and Andrade-Navarro MA. The FTO (fat mass and obesity associated) gene codes for a novel member of the non-heme dioxygenase superfamily. BMC Biochem. 2007;8:23.
  • Jia G, Yang CG, Yang S, et al. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett. 2008;582:3313–3319. doi:10.1016/j.febslet.2008.08.019.
  • Jia G, Fu Y, Zhao X, et al. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 2011;7:885–887. doi:10.1038/nchembio.687.
  • Gulati P, Cheung MK, Antrobus R, et al. Role for the obesity-related FTO gene in the cellular sensing of amino acids. Proc. Natl. Acad. Sci. U.S.A. 2013;110:2557–2562. doi:10.1073/ pnas.1222796110.
  • Gulati P, Avezov E, Ma M, et al. Fat mass and obesity-related (FTO) shuttles between the nucleus and cytoplasm. Biosci Rep. 2014;34:e00144. doi:10.1042/BSR20140111.
  • Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3' UTRs and near Stop Codons. Cell. 2012;149:1635–1646. doi:10.1016/j.cell.2012.05.003.
  • Xiang Y, Laurent B, Hsu Nachtergaele S, et al. RNA m(6)A methylation regulates the ultraviolet-induced DNA damage response. Nature. 2017;543:573-576. doi:10.1038/nature21671.
  • Geula S, Moshitch-Moshkovitz S, Dominissini D, et al. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science. 2015;347:1002-1006. doi:10.1126/science.1261417.
  • Mauer J, Luo X, Blanjoie A, et al. Reversible methylation of m(6)Am in the 5′cap controls mRNA stability. Nature. 2017;541:371–375. doi:10.1038/nature21022.
  • Wei J, Liu F, Lu Z, et al. Differential m(6)A, m(6)Am, and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell. 2018;71:973–985. doi:10.1016/j.m olcel.2018.08.011.
  • Dina C, Meyre D, Gallina S, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet.2007;39:724–726.
  • Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science.2007;316:889–894.
  • Scuteri A, Sanna S, Chen WM, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007;3:115.
  • Meyre D, Proulx K, Kawagoe-Takaki H, et al. Prevalence of loss-of-function FTO mutations in lean and obese individuals. Diabetes. 2010;59:311–318. doi:10.2337/db09-0703.
  • Rivera M, Cohen-Woods S, Kapur K, et al. Depressive disorder moderates the effect of the FTO gene on body mass index. Mol Psychiatry. 2012;17:604-611. doi:10.1038/mp.20 11.45.
  • Keller L, Xu W, Wang HX, Winblad B, Fratiglioni L, Graff C. The obesity related gene, FTO, interacts with APOE, and is associated with Alzheimer's disease risk: a prospective cohort study. J Alzheimers Dis. 2011;23:461-469. doi:10.3233/JAD-2010-101068.
  • Reitz C, Tosto G, Mayeux R, Luchsinger JA. NIA-LOAD/NCRAD Family Study Group; Alzheimer's Disease Neuroimaging Initiative. Genetic variants in the Fat and Obesity Associated (FTO) gene and risk of Alzheimer's disease. PLoS One. 2012;7:e50354. doi:10.1371/journal.pone.0050354.
  • Rowles J, Wong M, Powers R, Olsen M. FTO, RNA epigenetics and epilepsy. Epigenetics. 2012;7:1094-1097. doi:10.4161/epi.21977.
  • Mitropoulos K, Merkouri Papadima E, Xiromerisiou G, et al. Genomic variants in the FTO gene are associated with sporadic amyotrophic lateral sclerosis in Greek patients. Hum Genomics. 2017;11:30. doi:10.1186/s40246-017-0126-2.
  • Chang JY, Park JH, Park SE, Shon J, Park YJ. The Fat Mass- and Obesity-Associated (FTO) Gene to Obesity: Lessons from Mouse Models. Obesity (Silver Spring). 2018;26:1674-1686. doi:10.1002/oby.22301.
  • Boissel S, Reish O, Proulx K, et al. Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet. 2009;85:106–111. doi:10.1016/j.ajhg.2009.06.002.
  • Gao X, Shin YH, Li M, Wang F, Tong Q, Zhang P. The fat mass and obesity associated gene FTO functions in the brain to regulate postnatal growth in mice. PLoS One. 2010;5:e14005. doi:10.1371/journal.pone.0014005.
  • Zhao X, Yang Y, Sun BF, Zhao YL, Yang YG. FTO and Obesity: Mechanisms of Association. Curr Diab Rep. 2014;14:486. doi:10.1007/s11892-014-0486-0.
  • Kasap M, Akpinar G, Kanli A. Proteomic studies associated with Parkinson's disease. Expert Rev Proteomics. 2017;14:193-209. doi:10.1080/14789450.2017.1291344.
  • Kanli A, Kasap M, Akpinar G, Gulkac MD. Comparative analysis of glucoprotein profiles of SH-SY5Y cells stably expressing the wild type fat mass and obesity associated proteins. TJMBB. 2017;2:10–20.
  • Guzel N, Kasap M, Kanli A, Akpinar G, Gulkac MD, Karaosmanoglu K. Exogenous Expressions of FTO Wild-Type and R316Q Mutant Proteins Caused an Increase in HNRPK Levels in 3T3-L1 Cells as Demonstrated by DIGE Analysis. Biomed Res Int. 2017;2017:8216180. doi:10.1155 /2017/8216180.
  • Rennel E, Gerwins P. How to make tetracycline-regulated transgene expression go on and off. Anal Biochem. 2002;309:79–84.
  • Ozgul S, Kasap M, Akpinar G, Kanli A, et al. Linking a compound-heterozygous Parkin mutant (Q311R and A371T) to Parkinson's disease by using proteomic and molecular approaches. Neurochem Int. 2015;85–86:1–13. doi:10.1016/j .neuint.2015.03.007.
  • Kasap M, Akpinar G, Guzel N, Selimoglu M. Stable expression of human proteins in cultured cells. TJMBB. 2016;1:72–79.
  • Kanli A, Kasap M, Yoneten KK, Akpinar G, Gulkac MD. Identification of differentially regulated deceitful proteins in SH-SY5Y cells engineered with Tet-regulated protein expression system. J Cell Biochem. 2018;119:6065-6071. doi:10.1002/jcb.26804.
  • Kasap M, Thomas S, Danaher E, Holton V, Jiang S, and Storrie B. Dynamic nucleation of Golgi apparatus assembly from the endoplasmic reticulum in interphase HeLa cells. Traffic. 2004;5:595–605.
  • Kasap M, Yegenaga I, Akpinar G, Tuncay M, Aksoy A, and Karaoz E. Comparative proteome analysis of hAT-MSCs isolated fromchronic renal failure patients with differences in their bone turnover status. PLoS ONE. 2015;10:e0142934. doi:10.1371/journal.pone.0142934.
  • Kasap M, Torol S, Gacar G, and Budak F. Ethidium bromide spot test is a simple yet highly accurate method in determining DNA concentration. Turkish Journal of Medical Sciences. 2006;36:383–386.
  • Kampinga HH, Hageman J, Vos MJ, et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones. 2009;14:105-111 doi:10.1007/s12192-008-0068-7.
  • Radons J. The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones. 2016;21:379-404. doi:10.1 007/s12192-016-0676-6.
  • Lindquist S, Craig EA. The heat-shock proteins. Annu. Rev. Genet. 1988;22:631-677.doi:10.1146/annurev.ge.22.120188.0 03215.
  • Daugaard M, Rohde M, Jaattela M. The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett. 2007 581:3702-3710. doi:10.1016/j.febslet.2007.05.039.
  • Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature. 2015;526:591–594. doi:10.1038/nature15377.
  • Heng J, Tian M, Zhang W, Chen F, Guan W, Zhang S. Maternal heat stress regulates the early fat deposition partly through modification of m6A RNA methylation in neonatal piglets. Cell Stress Chaperones. 2019;24:635-645. doi:10.10 07/s12192-019-01002-1.
  • Watson HC, Walker NP, Shaw PJ, et al. Sequence and structure of yeast phosphoglycerate kinase. The EMBO Journal. 1982;1:1635–1640.
  • Guo F, Zhang Y, Zhang C, Wang S, Ni Y, Zhao R. Fat mass and obesity associated (FTO) gene regulates gluconeogenesis in chicken embryo fibroblast cells. Comp Biochem Physiol A Mol Integr Physiol. 2015;179:149-156.
  • Liu Y, Wang R, Zhang L, Li J, Lou K, Shi B. The lipid metabolism gene FTO influences breast cancer cell energy metabolism via the PI3K/AKT signaling pathway. Oncol Lett. 2017;13:4685-4690. doi:10.3892/ol.2017.6038.
  • Stevens, FC. Calmodulin: an introduction. Can J Biochem Cell Biol. 1983;61:906–910. doi:10.1139/o83-115.
  • Lin L, Hales CM, Garber K, Jin P. Fat mass and obesity-associated (FTO) protein interacts with CaMKII and modulates the activity of CREB signaling pathway. Hum Mol Genet. 2014;23:3299-3306. doi:10.1093/hmg/ddu043.
  • Osborn DP, Roccasecca RM, McMurray F, Hernandez-Hernandez V, Mukherjee S, Barroso I, et al. Loss of FTO antagonises Wnt signaling and leads to developmental defects associated with ciliopathies. PLoS One. 2014;9:e87662. doi:10.1371/journal.pone.0087662.
  • Schweizer J, Bowden PE, Coulombe PA, et al. New consensus nomenclature for mammalian keratins. J Cell Biol. 2006;174:169-174. doi:10.1083/jcb.200603161
  • UniProtKB - P13645 (K1C10_HUMAN). https://www.unipro t.org/uniprot/P13645. Accessed September 22, 2019.
  • Paramio JM, Casanova ML, Segrelles C, Mittnacht S, Lane EB, Jorcano JL. Modulation of cell proliferation by cytokeratins K10 and K16. Mol Cell Biol. 1999;19:3086-3094. doi:10.1128/mcb.19.4.3086.
  • Magin TM, Vijayaraj P, Leube RE. Structural and regulatory functions of keratins. Exp Cell Res.2007;313:2021-2032. doi:10.1016/j.yexcr.2007.03.005.
  • Reichelt J, Breiden B, Sandhoff K, Magin TM. Loss of keratin 10 is accompanied by increased sebocyte proliferation and differentiation. Eur J Cell Biol. 2004;83:747-759. doi:10.10 78/0171-9335-00429.
  • Paramio JM, Segrelles C, Ruiz S, Jorcano JL. Inhibition of protein kinase B (PKB) and PKCzeta mediates keratin K10-induced cell cycle arrest. Mol Cell Biol. 2001;21:7449-7459. doi:10.1128/MCB.21.21.7449-7459.2001.
  • Jiao Y, Zhang J, Lu L, Xu J, Qin L. The Fto Gene Regulates the Proliferation and Differentiation of Pre-Adipocytes in Vitro. Nutrients. 2016;8(2):102. doi:10.3390/nu8020102.
  • Zhang Z, Zhou D, Lai Y, et al. Estrogen induces endometrial cancer cell proliferation and invasion by regulating the fat mass and obesity-associated gene via PI3K/AKT and MAPK signaling pathways. Cancer Lett. 2012;319(1):89-97. doi:10 .1016/j.canlet.2011.12.033.
  • Zhang C, Zhang M, Ge S, et al. Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3K-Akt signaling in gastric cancer. Cancer Med. 2019;8:4766-4781. doi:10.1002/cam4.2360.
Kocaeli Üniversitesi Sağlık Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2015
  • Yayıncı: -