Çelik Cüruflarının Potansiyel Kullanım Alanlarının Değerlendirilmesi

Ülkelerin sahip olduğu doğal kaynakların yanı sıra atıkların değerlendirilmesi günümüzde ekonomik açıdan rekabet gücünü önemli derecede etkilemektedir. Özellikle endüstriyel üretim sonucu oluşan atıkların geri dönüştürülerek farklı sektörlerde kullanılması, hem ülkelerin birincil hammadde kullanım ihtiyacının azalması ile ekonomik fayda sağlamakta hem de bu atıkların çevresel olumsuz etkilerinin önlenmesine katkıda bulunmaktadır. Bu çalışmada, çelik üretim tesislerinde yan ürün olarak ortaya çıkan çelik cüruflarının, geri dönüşüm yoluyla ulusal ekonomiye katkı sağlayacak şekilde farklı alanlarda kullanım potansiyelleri değerlendirilmiştir. Türkiye ekonomisinin önemli bir kaynağı olan çeliğin üretimi sırasında oluşan cüruflara ait karakteristik özellikler incelendiği zaman birçok alanda kullanıma uygunluğu gözlemlenmiştir. Yapılan araştırmalar, çelik üretimi sonucunda oluşan atıl durumundaki cürufların genellikle doğal agrega yerine kullanılabilir olduğunu göstermiştir. Bu malzemenin özellikle karayolu yapımı, çimento ve beton üretimi, kıyı ve liman yapıları, demiryolu yapımı, gübre ve grit üretimi gibi pek çok alanda geleneksel malzemelere göre kabul edilebilir derecede kullanılabilir olduğu değerlendirilmiştir.

Evaluation of Potential Uses of Steel Slags

In addition to the natural resources of the countries, the evaluation of wastes has had a significant impact on the competitiveness of the economy in recent years. Especially the recycling of wastes generated because of industrial production and their use in different sectors both provide economic benefits by reducing the need for primary raw material use and contribute to the prevention of the negative environmental effects of these wastes. In this study, the potential of use of steel slag, which is produced as a by-product in steel production facilities, in different areas, which will contribute to the national economy through recycling, has been evaluated. When the characteristics of the slag formed during the production of steel, which is an important resource of the Turkish economy, are examined, it has been observed that it is suitable for use in many areas. Studies have shown that the slag formed because of steel production can generally be used instead of natural aggregate. It has been evaluated that this material can be used at an acceptable level in many areas such as road construction, cement and concrete production, coastal and port structures, railway construction, fertilizer, and grit production.

___

  • Ahmedzade, P., Sengoz, B. (2009). Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. Journal of Hazardous Materials, 165(1-3), 300-305.
  • Aiban, S. A. (2006). Utilization of steel slag aggregate for road bases. Journal of Testing and Evaluation, 34(1), 1-12.
  • Asi, I. M., Qasrawi, H. Y., Shalabi, F. I. (2007). Use of steel slag aggregate in asphalt concrete mixes. Canadian Journal of Civil Engineering, 34(8), 902-911.
  • Baalamurugan, J., Kumar, V. G., Chandrasekaran, S., Balasundar, S., Venkatraman, B., Padmapriya, R., Raja, V. B. (2021). Recycling of steel slag aggregates for the development of high density concrete: Alternative & environment-friendly radiation shielding composite. Composites Part B: Engineering, 216, 108885.
  • Barišić, I., Dimter, S., Netinger, I. (2010). Possibilities of application of slag in road Construction. Technical Gazette, 17(4), 523-528.
  • Bilen, M., (2010). Çelikhane curuflarından liç-karbonatlaştırma prosesi ile kalsiyum karbonat kazanılması. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Adana.
  • Bilen, M., (2020). Pota metalürjisinde oluşan pota cürufunun kolemanit ile ıslahı. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(2), 943-951.
  • Branca, T. A., Colla, V. (2012). Possible uses of steelmaking slag in agriculture: an overview. Material recycling–Trends and perspectives, 335-356.
  • Branca, T.A., Pistocchi, C., Colla, V., Ragaglini, G., Amato, A., Tozzini, C., Mudersbach D., Morillon, A., Rex, M. and Romaniello, L. (2014). Investigation of (BOF) convertor slag use for agriculture in Europe. Metallurgical Research and Technology, 111(3), 155-167.
  • Candan, E. (2001). Metalurjik cürufların yüzey temizleme işlemlerinde grit olarak kullanımı. TMMOB Metalurji Mühendisliği Odası, 126, 22-25.
  • Chaurand, P. (2007). Environmental impacts of steel slag reused in road construction: A crystallographic and molecular (xanes) approach. Journal of Hazardous Materials, 139(3), 537-42.
  • Chen, Z., Xie, J., Xiao, Y., Chen, J., Wu, S. (2014). Characteristics of bonding behavior between basic oxygen furnace slag and asphalt binder. Construction and Building Materials, 64, 60-66.
  • Chen, Z., Wu, S., Xiao, Y., Zhao, M., Xie, J. (2016). Feasibility study of BOF slag containing honeycomb particles in asphalt mixture. Construction and Building Materials, 124, 550-557.
  • ÇİB, (2023). Çelik İhracatçıları Birliği, https://www.cib.org.tr/tr/istatistikler.html (06.03.2023).
  • Esmaeili, M., Nouri, R., & Yousefian, K. (2017). Experimental comparison of the lateral resistance of tracks with steel slag ballast and limestone ballast materials. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 231(2), 175-184.
  • Ferreira, H. A., do Nascimento, C. W. A., Datnoff, L. E., de Sousa Nunes, G. H., Preston, W., de Souza, E. B., Mariano, R. D. L. R. (2015). Effects of silicon on resistance to bacterial fruit blotch and growth of melon. Crop Protection, 78, 277-283.
  • Fronek, B. A. (2011). Feasability of expanding the use of steel slag as a concrete pavement aggregate. Cleveland State University, Department of Civil and Environmental Engineering, MSci Thesis, USA.
  • Guo, J., Bao, Y., Wang, M. (2018). Steel slag in China: Treatment, recycling, and management. Waste Management, 78, 318-330.
  • Günay, E., Kara, M. (2005). Erdemir çelikhane cüruflarının ekonomik ve ekolojik değerlendirilmesi. 3. Demir Çelik Kongresi, 22-24 Eylül, Zonguldak.
  • Han, F., Yun, S., Zhang, C., Xu, H., Wang, Z. (2019). Steel slag as accelerant in anaerobic digestion for nonhazardous treatment and digestate fertilizer utilization. Bioresource Technology, 282, 331-338.
  • Jing, G., Wang, J., Wang, H., Siahkouhi, M. (2020). Numerical investigation of the behavior of stone ballast mixed by steel slag in ballasted railway track. Construction and Building Materials, 262, 120015.
  • Kara, M., Günay, E., Kavakli, B., Tayfur, S., Eren, K., Karadag, G. (2004). The use of steel slag in asphaltic mixture. Key Engineering Materials, 264(268), 2493-2496.
  • Koh, T., Moon, S. W., Jung, H., Jeong, Y., Pyo, S. (2018). A feasibility study on the application of basic oxygen furnace (BOF) steel slag for railway ballast material. Sustainability, 10(2), 284.
  • Kumar, D. (2016). Latest developments in the iron and steel industry. Management of Coking Coal Resources, 9-60.
  • Monshi, A., Asgarani, M. K. (1999). Producing Portland cement from iron and steel slags and limestone. Cement and Concrete Research, 29(9), 1373-1377.
  • Morrison, Y. (1974). Applications of Boiler Slag. In Regional Seminar on Ash Utilization, St. Louis, Missouri, by the American Coal Ash Association, November.
  • Noureldin, A. S., McDaniel, R. S. (1990). Evaluation of surface mixtures of steel slag and asphalt. Transportation Research Record, 1269, 133-149.
  • NSA, 2021. Guide for the use of steel slag in agriculture and for reclamation of acidic lands. National Slag Associaiton, Utah, USA.
  • Palod, R., Deo, S. V., Ramtekkar, G. D. (2019). Utilization of waste from steel and iron industry as replacement of cement in mortars. Journal of Material Cycles and Waste Management, 21(6), 1361-1375.
  • Pellegrino, C., Gaddo, V. (2009). Mechanical and durability characteristics of concrete containing EAF slag as aggregate. Cement and Concrete Composites, 31(9), 663-671.
  • Preston, H. A. F., de Sousa Nunes, G. H., Preston, W., de Souza, E. B., de Lima Ramos Mariano, R., Datnoff, L. E., do Nascimento, C. W. A. (2021). Slag-based silicon fertilizer improves the resistance to bacterial fruit blotch and fruit quality of melon grown under field conditions. Crop Protection, 147, 105460.
  • Qasrawi, H. (2012). Use of relatively high Fe2O3 steel slag as coarse aggregate in concrete. ACI Materials Journal, 109(4), 471-478.
  • Reuter, M., Xiao Y., Boin U. (2004). Recycling and environmental ıssues of metalurgical slags and salt fluxes. VII. International Conference on Molten Slags, Fluxes and Salts, 349-356.
  • Sharba, A. A. K., Altemen, A. A. G. A., Hason, M. M. (2021). Shear behavior of exploiting recycled brick waste and steel slag as an alternative aggregate for concrete production. Materials Today: Proceedings, 42, 2621-2628.
  • Sofilic, T., Mledanovic, A., Sofilic, U., (2009). Defining of EAF steel slag application possibilities in asphalt mixture production, Journal of Environmental Engineering and Landscape Management, 19(2), 148-157.
  • TÇÜD, (2015). Türkiye Çelik Üreticileri Derneği, Demri çelik cüruf raporu, https://celik.org.tr/wp-content/uploads/2016/12/4-TCUD-Curuf_Rapor.pdf (06.03.2023)
  • TÇÜD, (2022). Türkiye Çelik Üreticileri Derneği, https://celik.org.tr/harita/ (20.07.2022).
  • Tokyay M (2013). Betonda uçucu kül, yüksek fırın cürufu ve silis dumanının rolü. Beton 2013 Kongresi, İstanbul, 201-238.
  • Tozsin, M., Öztaş, T. (2023). Çelik cüruflarının tarımsal amaçlı kullanılması. Atatürk University Journal of Agricultural Faculty, 54(1), 36-41.
  • Uysal, F. F., Bahar, S. (2018). Cüruf çeşitleri ve kullanım alanları. Trakya University Journal of Engineering Sciences, 19(1), 37-52.
  • Ünal, A. (2017). Atıktan ürüne demir-çelik cürufu. Marmara Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İstanbul.
  • Wang, Q., Yan, P., Yang, J., Zhang, B. (2013a). Influence of steel slag on mechanical properties and durability of concrete. Construction and Building Materials, 47, 1414-1420.
  • Wang, Q., Yang, J., Yan, P. (2013b). Cementitious properties of super-fine steel slag. Powder Technology, 245, 35-39.
  • Wang, G. C. (2016). Slag Processing, The utilization of slag in civil infrastructure construction. Woodhead Publishing, 87-113.
  • Wang, W., Sardans, J., Wang, C., Zeng, C., Tong, C., Bartrons, M. and Peñuelas, J. (2018). Steel slag amendment increases nutrient availability and rice yield in a subtropical paddy field in China. Experimental Agriculture, 54(6), 842-856.
  • Wu, S., Xue, Y., Ye, Q., Chen, Y. (2007). Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures. Building and Environment, 42(7), 2580-2585.
  • Yıldırım, I. Z., Prezzi, M. (2011). Chemical, mineralogical and morphological properties of steel slag. Advances in Civil Engineering, 2011, 463638.
  • Yılmaz, M. 2018. Çelikhane cürufunun yol üst yapısının iyileştirilmesinde kullanımı. Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Eskişehir.
  • Yi, H., Xu, G., Cheng, H., Wang, J., Wan, Y., Chen, H. (2012). An overview of utilization of steel slag. Procedia Environmental Sciences, 16, 791-801.
  • Yonar, F., (2017). Elektrik ark ocağı çelikhane cürufunun karayolu esnek üstyapı tabakalarında kullanımının ve karışım performansının araştırılması. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, İstanbul.
  • Yüksel, İ. (2017). A review of steel slag usage in construction industry for sustainable development. Environment, Development and Sustainability, 19(2), 369-384.