Büyükçay Havzası'nın (Elazığ) Erozyon Risk Haritasının Hazırlanması

Bu çalışmada ağırlıklı çakıştırma yöntemi kullanılarak Büyükçay Havzası'nın erozyon risk analizlerinin yapılması amaçlanmıştır. Elazığ'ın güneydoğusunda yer alan Büyükçay Havzası, Mastar Dağı ve Keban Barajı ile çevrilidir. Havzanın KD-GB doğrultusunda fayla kesilmesi önemli yükselti farkına neden olmuştur. Eğim değerlerinin yüksek olduğu havzada bitki örtüsü seyrektir. Büyükçay Havzası'nın iklimi, jeomorfolojik ve bitki örtüsü özellikleri nedeniyle çok şiddetli erozyon yaşanmaktadır. Erozyon sonucu özellikle kuzey ve kuzeybatıdaki dağlık alanlardan taşınan malzeme, havzanın batı ve doğusunda yer alan tarım alanlarını etkilemektedir. Bunun yanında taşınan malzeme Keban Baraj Gölü'nde siltasyona neden olmaktadır. Bu çalışmada eğim, bitki örtüsü, drenaj yoğunluğu ve toprak parlaklığı (tekstür) kullanılarak havza için erozyon risk analizleri yapılmıştır. Risk analizleri Coğrafi Bilgi Sistemleri (CBS) ve Uzaktan Algılama (UA) yöntemleri kullanılarak yapılmıştır. Yapılan arazi gözlemleri ile erozyon üzerinde etkili olan faktörlerin önem derecesi belirlenmiş ve bu faktörlere ağırlık değeri atanmıştır. Ağırlıkları belirlenen faktör haritaları toplanarak erozyon risk haritası oluşturulmuştur. Erozyon risk analizlerine göre Büyükçay Havzası'nın % 24'i erozyona karşı yüksek derecede risklidir. Orta derecede riskli alanlar % 44, riskin düşük olduğu alanlar ise % 25'lik orana sahiptir. Bu sonuçlara göre Büyükçay Havzası'nda erozyon riskinin yüksek olduğu görülmektedir. Bu nedenle mikro havza faaliyetleri kapsamında erozyonla mücadele çalışmalarının hızlandırılması gerekmektedir

Forming Of Erosion Risk Map of Büyükçay Basin (Elazığ)

In this study, it has been aimed to carry out erosion risk analysis of Büyükçay Basin using weighted overlay method. Located in the southeast of Elazığ, Büyükçay Basin is surrounded by Mastar Mountain and Keban Dam. The basin's having been cut by a fault in NE-SW direction have caused significant difference in elevation. Vegetation is sparse in the basin, where slope values are high. Very severe erosions have been seen in Büyükçay Basin due to its climate, geomorphologic and vegetation features. As a result of the erosion, material especially carried from mountain areas in north and north-west, affects the agriculture lands in the east and west of the basin. Besides, carried material causes siltation in the Keban Dam Lake. In this study, erosion risk analysis has been done for the basin by using slope, vegetation, drainage density and soil brightness (texture). Risk analysis has been done using Geographıc Information Systems and Remote Sensing methods. Significance of factors on field observations and erosion have been assigned and weight value has been added to these factors. Collecting factor maps whose weigts have been determined, risk map has been created. According to the erosion risk analysis, an area of 24% in Büyükçay Basin is high-risk areas to the erosion. Medium-risk areas and low-risk areas have the rates of 44 % and 25%, respectively. Based on these results, the erosion risk in Büyükçay Basin is high. For this reason, erosion control studies must be accelerated within the scope of microbasin activities

___

  • Akgün, A., 2007. Ayvalık ve yakın çevresinin erozyon ve heyelan duyarlılığının coğrafi bilgi sistemleri tabanlı İncelenmesi. Doktora Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Ayalew, L., Yamagishi, H. 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda Yahiko Mountains, Central Japan. Geomorphology 65, 15-31.
  • Baig, M. H. A., Zhang, L., Shuai, T. Tong, Q. 2014. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance, Remote Sensing Letters, 5(5), 423, 431.
  • Beguería, S. 2006.Identifying erosion areas at basin scale using remote sensing data and GIS: a case study in a geologically complex mountain basin in the Spanish Pyrenees. International Journal of Remote Sensing 27 (20), 4585-4598.
  • Crist, E. P., Kauth, R. J. 1986. The Tasseled Cap De-Mystified. Photogrammetric Engineering & Remote Sensing, 52 (1), 81-86.
  • Crist, E. P., Cicone, R. C. 1984. Application of the Tasseled-Cap concept to simulated Thematic Mapper data. Photogrammetric Engineering and Remote Sensing, 50, 343-352.
  • Doğan, O. 2011. Türkiye'de erozyon sorunu nedenleri ve çözüm önerileri". Bilim ve Aklın Aydınlığında Eğitim, 134, 62-69.
  • Floras, S. A., Sgouras, I. D. 1999. Use of geoinformation techniques in identifying and mapping areas of erosion in a hilly landscape of central Greece. International Journal of Applied Earth Observation and Geoinformation, 1,68-77.
  • Frazıer, Be., Cheng, Y. 1989. Remote sensing of soils in the eastern Palouse region with Landsat Thematic Environment, 28, 317-325. Remote Sensing of
  • Huang, C., Wylie, B., Yang, L., Homer, C., Zylstra, G. 2002. Derivation of a tasseled cap transformation based on Landsat 7 at-satellite reflectance, International Journal of Remote Sensing, 23, 1741-1748.
  • Garg, P. K., Harrison, A. R. 1992. Land Degradation and Erosion Risk Analysis in S. E. Spain: Approach, CATENA, 19, 411-425. Information System
  • Gıannettı, F., Montanarella, L., Salandın, R. 2001. Integrated use of satellite images, DEMs, soil and substrate data in studying mountainous lands. International Journal of Applied Earth Observation and Geoinformation, 3:25-29.
  • Gülersoy, A. E. 2008. Bakırçay Havzası'nda doğal ortam koşulları ile arazi kullanımı arasındaki ilişkiler. Doktora Tezi, Dokuz Eylül Üniversitesi, Izmir.
  • Gülersoy, A. E., Çelik, M. A. 2015. Determining of areas with high erosion risk in Küçük menderes river basin (west anatolia, turkey) By using multi-criteria decision making method. Fresenius Environmental Bulletin, V: 24, No: 1a.
  • Haboudane, D., Bonn, F., Royer, A., Sommer, S., Mehl, W. 2002. Land degradation and erosion risk mapping by fusion of spectrally-based information and digital geomorphometric attributes. International Journal of Remote Sensing, 23: 3795- 3820.
  • Kauth, R. J., Thomas, G. S. 1976. The Tasseled Cap a graphic description of the spectral-temporal development of agricultural crops as seen in Landsat. In Proceedings on the Symposium on Machine Processing of Remotely Sensed Data. West Lafayette, Indiana, 41-51.
  • Ma, J. W., Xue, Y., Ma, C.F., Wang, Z.G. 2003. A data fusion approach for soil erosion monitoring in the Upper Yangtze River Basin of China based on Universal Soil Loss Equation (USLE) model. International Journal of Remote Sensing, 24: 4777- 4789.
  • Matı, B. M., Morgan, R. P. C., Gıchuk, F.N., Quıntor, J. N., Brewer, T.R., Lınıger, H. P. 2000. Assessment of erosion hazard with the USLE and GIS: A case study of the Upper Ewaso Ng'iro North basin of Kenya. International Journal of Applied Earth Observation and Geoinformation, 2: 78-86.
  • Nigel, R., Rughooputh S.D.D.V. 2010. Soil Erosion Risk Mapping with New Datasets: An Improved Identification and Prioritisation of High Erosion Risk Areas. Catena, 82, 191-205.
  • Pıckup, G., Nelson, D. J. 1984. Use of Landsat radiance parameters to distinguish soil erosion, stability and deposition in arid central Australia. Remote Sensing of Environment, 16:195-209.
  • Pıckup, G., Chewıngs, V. H. 1988. Forecasting patterns of soil erosion in arid lands from Landsat MSS data. International Journal of Remote Sensing, 9:69-84.
  • Torrent, J., V. Barron. 1993. Laboratory measurement of soil color: theory and practice. In: Bigham, J.M., Ciolkosz, E.J. (Eds.), Soil Color. Soil Science Society of America, Madison, WI, 21-34. Sanchez-Maran~on, M., M. Soriano, M.
  • Melgosa, G. Delgado., R. Delgado. 2004. Quantifying the effects of aggregation, particle size and components on the colour of Mediterranean soils. European Journal of Soil Science. 51, 551- 565.
  • Shrımalıl, S.S, Aggarwalz, S.P., Samral, J. S. 2001. Prioritizing erosion-prone areas in hills using remote sensing and GIS-a case study of the Sukhna Lake catchment, Northern India. International Journal of Applied Earth Observation and Geoinformation, 3:54-60.
  • Symeonakıs, E., Drake, N. 2004. Monitoring desertification and land degradation over sub- Saharan Africa. International Journal of Remote Sensing, 25:573-592.
  • Tağıl, Ş. 2009. Spatial Distribution and Affecting Factors of Soil Loss on Çakırdere and Yahu Dere Stream Basins (Balıkesir). Balıkesir University Journal of Institute of Social Sciences, 22, 23-39.
  • Trıpathy, G. K., Ghosh, T. K.., Shah, S. D. 1996. Monitoring of desertification process in Karanataka state of India using multi-temporal remote sensing and ancillary information using GIS. International Journal of Remote Sensing, 17:2243-2257.
  • Van Vesten, C. J., Rengers, N., Terlien, M. T. J. 1997. Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geol. Rundsch., 86, 404-414.
  • Vrieling, A., Jong, S. M., Sterk, G., Rodrigues, S. C. 2008. Timing Of Erosion and Satellite Data: A Multi-Resolution Approach To Soil Erosion Risk Mapping. International Journal of Applied Earth Observation and Geo-information, 10, 267-281.
  • Yüksel, A., Avci, V. 2015. Erosion Risk Mapping of Capakcur Stream Watershed Using Geographical Information System and Remote Sensing. Volume: 24, No: 10. Bulletin,
  • Zınck, J. A., López, J., Metternıcht, G. I., Shrestha, D.P., Vázquezselem, L. 2001. Mapping and modelling mass movements and gullies in mountainous areas using remote sensing and GIS techniques. International Journal of Applied Earth Observation and Geoinformation, 3:43-53.
  • http://landsat.usgs.gov/band_designations_lands at_satellites.php. 08/01/2015 tarihli erişim.