Mut (Mersin) Bölgesinde Hasat Edilen Natürel Sızma Zeytinyağlarının Senkron Floresans Spektroskopisi ve Kemometri ile Orijinalliğinin Doğrulanması: LDA ve HCA Model Yaklaşımları

Bu çalışmada, Mut (Mersin) bölgesinden iki farklı hasat döneminde (2019 ve 2020 Ekim) elde edilen ekstra saf sızma zeytinyağı (VOO) ve diğer yemeklik yağların senkron floresans (SyF) spektroskopi verileri, doğrusal diskriminant analizi (LDA) ve hiyerarşik küme analizi (HCA) ile analiz edilerek orijinalliklerinin doğrulanması sağlanmıştır. Spektroskopi analizlerinde emisyon ve uyarma monokromatörleri eşzamanlı yani senkron kullanılmış ve veriler 200–800 nm emisyon dalga boyu bölgesinde elde edilmiştir. VOO ve diğer yenilebilir yağ numunelerinin muhtemel tağşiş durumunu doğrulamak için yüksek doğrulukla LDA modeli elde edilmiş: test edilen numunelerin %98.28'i kendi bölgesinde yerleşim göstermiş ve HCA dendogramları yüksek hassasiyet ve özgüllük ile numunelerde başarılı ayrımlar sağlamıştır. Elde edilen bulgular, SyF spektroskopisinin kemometri ile birleştiğinde sınıflandırma yeteneğini açıkça göstermekte ve VOO numunelerinin ucuz yenilebilir yağlarla olası tağşişini tespit edebilmek için umut verici bir yöntem sunmaktadır. Üstelik bu basit ve hızlı metodoloji, analiz sırasında herhangi bir kimyasal kullanımına ve zahmetli işlemlere ihtiyaç duymadan uygulanabilmektedir.

Authenticity Verification of Extra Virgin Olive Oils Harvested in Mut (Mersin) Region by Synchronous Fluorescence Spectroscopy and Chemometrics: Approaches on LDA and HCA Models

In this work, synchronous fluorescence (SyF) spectroscopy data of extra virgin olive oils (VOOs) harvested from two different harvest terms (2019 and 2020 October) in Mut (Mersin) region and other edible oils were analyzed by linear discriminant analysis (LDA) and hierarchical cluster analysis (HCA) to verify their authenticity. The emission and excitation monochromators were synchronously employed and the data were obtained in the emission wavelength region of 200–800 nm. A robust LDA model was gained to authenticate the extra VOOs and other edible oils: 98.28% of the tested samples were correctly predicted, and HCA dendograms showed successful discriminations with high sensitivity and specificity. The findings show the capability of SyF spectroscopy coupled with chemometrics and offer a promising methodology for confirming the possible adulteration of extra VOOs with inexpensive edible oils. Furthermore, this simple and rapid methodology doesn’t need any chemical usage and laborious procedures through the analysis.

___

  • [1] Dong W., Zhang Y., Zhang B., Xiaoping W., Quantitative analysis of adulteration of extra virgin olive oil using Raman spectroscopy improved by Bayesian framework least squares support vector machines Anal. Methods, pp. 2772–2777 (2012).
  • [2] Milanez K.D.T. de M., Pontes M.J.C., Classification of extra virgin olive oil and verification of adulteration using digital images and discriminant analysis Anal. Methods, 7, pp. 8839–8846 (2015).
  • [3] Uncu O., Ozen B., Geographical differentiation of a monovarietal olive oil using various chemical parameters and mid-infrared spectroscopy Anal. Methods, 8, pp. 4872–4880 (2016).
  • [4] Ou G., Hu R., Zhang L., Li P., Luo X., Zhang Z., Advanced detection methods for traceability of origin and authenticity of olive oils Anal. Methods, 7, pp. 5731–5739 (2015).
  • [5] Varlı İ., Development of Simple and Rapid Synchronous Fluorescence Spectroscopy Methods based on Chemometric Data Analysis Approach for the Classification and Adulteration of Olive Oils in Mut (Mersin) Region, Master Thesis, Karamanoglu Mehmetbey Uviversity, Chems, (2022).
  • [6] Arslan F.N., ATR–FTIRspectroscopy combined with chemometrics for rapid classification of extra virgin olive oils and edible oils from different cultivars available on the Turkish markets Eskişehir Tech. Univ. J. Sci. Technol. A- Appl. Sci. Eng., 19, pp. 926–947 (2018).
  • [7] Tumay H., Tamer U., Berkkan A., Hakki I., Synchronous fluorescence spectroscopy for determination of tahini adulteration Talanta, 167, pp. 557–562 (2017).
  • [8] Poullı K.I., Chantzos N. V., Mousdıs G.A., Georgıou C.A., Synchronous Fluorescence Spectroscopy : Tool for Monitoring Thermally Stressed Edible Oils J. Agric. Food Chem., 57, pp. 8194–8201 (2009).
  • [9] Alves J.O., Sena M.M., Augusti R., Multivariate calibration applied to ESI mass spectrometry data : a tool to quantify adulteration in extra virgin olive oil with inexpensive edible oils Anal. Methods, 6, pp. 7502–7509 (2014).
  • [10] Sun X., Lin W., Li X., Shen Q., Luo H., Detection and quantification of extra virgin olive oil adulteration with edible oils by FT-IR spectroscopy and chemometrics Anal. Methods, 7, pp. 3939–3945 (2015).
  • [11] Karuk Elmas Ş.N., Arslan F.N., Akin G., Kenar A., Janssen H., Yilmaz I., Synchronous fluorescence spectroscopy combined with chemometrics for rapid assessment of cold – pressed grape seed oil adulteration : Qualitative and quantitative study Talanta, 196, pp. 22–31 (2019).
  • [12] Arslan F.N., Çağlar F., Attenuated Total Reflectance – Fourier Transform Infrared (ATR – FTIR) Spectroscopy Combined with Chemometrics for Rapid Determination of Cold-Pressed Wheat Germ Oil Adulteration Food Anal. Methods, 12, pp. 355–370 (2019).
  • [13] Kenar A., Çiçek B., Arslan F.N., Akin G., Karuk Elmas Ş.N., Yilmaz I., Electron Impact – Mass Spectrometry Fingerprinting and Chemometrics for Rapid Assessment of Authenticity of Edible Oils Based on Fatty Acid Profiling Food Anal. Methods, 12, pp. 1369–1381 (2019).