Galanthus elwesii Hook.f.’nin Farklı Ekstraktlarının Serbest Radikal Yakalama ve Metal Şelatlama Aktivitelerinin Tespit Edilmesi
İnsan vücudunu oksidatif strese karşı koruyan antioksidanlar içerisinde doğal bileşikler önemli rol oynamaktadır. Birçok bitki taşıdıkları bileşikler aracılığı ile yüksek seviyede antioksidan kapasiteye sahip olabilir. Bu bilgiler doğrultusunda, mevcut çalışmada, Galanthus elwesii Hook.f.’nin antioksidan özelliklerini değerlendirmeyi amaçladık. Bu kapsamda, bu bitkinin soğan kısmından elde ettiğimiz metanol ve su ekstraktlarının farklı konsantrasyonlarının (12,5-400 mg/L) 1,1-difenil-2-pikrilhidrazil (DPPH) yakalama ve metal şelatlama aktivitelerini test ettik. Her iki ekstrakt için de konsantrasyona bağlı aktivite artışı görülmüştür. 400 mg/L konsantrasyonlu uygulamaların gösterdiği DPPH yakalama (%87,10) ve metal şelatlama (%72,99) aktiviteleri ön plana çıkmıştır. Ayrıca bu verilerin diğer uygulamaların ortaya çıkardığı aktivite oranlarından önemli derecede (p < 0,05) yüksek olduğu belirlenmiştir. IC50 değerleri göz önüne alındığında, DPPH yakalama ve metel şelatlama aktiviteleri için düşük değerler (sırasıyla, 110,88 mg/L ve 132,40 mg/L) su ekstraktlarında tespit edilmiştir. Sonuç olarak, antioksidanlar bakımından zengin bir kaynak olabilme potansiyeline sahip olan bitkiler içerisinde G. elwesii’nin önemi bu çalışma ile ortaya çıkarılmıştır.
Determination of Free Radical Scavenging and Metal Chelating Activities of Different Extracts of Galanthus elwesii Hook.f.
Natural compounds play an important role among antioxidants that protect the human body against oxidative stress. Many plants may have high levels of antioxidant capacity through the compounds they contain. In line with this information, in the current study, we aimed to evaluate the antioxidant properties of Galanthus elwesii Hook.f. In this context, we tested the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and metal chelating activities of different concentrations (12.5-400 mg/L) of methanol and water extracts obtained from the bulb part of this plant. A concentration-dependent increase in activity was observed for both extracts. DPPH scavenging (87.10%) and metal chelating (72.99%) activities demonstrated by 400 mg/L concentration applications came to the fore. In addition, it was determined that these data were significantly (p < 0.05) higher than the activity rates revealed by other applications. Considering the IC50 values, low values for DPPH scavenging and metal chelating activities (110.88 mg/L and 132.40 mg/L, respectively) were detected in water extracts. As a result, the importance of G. elwesii among plants that have the potential to be a rich source of antioxidants was revealed in this study.
___
- [1] Ahmed S.A., Hasan M.N., Bagchi D., Altass H.M., Morad M., Jassas R.S., Hameed A.M., Patwari J., Alessa H., Alharbi A., Alharbi A., Pal S.K., Combating essential metal toxicity: key information from optical spectroscopy, ACS Omega., 5(25), pp.15666–15672, (2020).
- [2] Babashpour-Asl M., Kaboudi P.S., Barez S.R., Therapeutic and medicinal effects of snowdrop (Galanthus spp.) in Alzheimer’s disease: a review, J. Educ. Health Promot., 12(1), pp.128, (2023).
- [3] Bach A., Pawłowska B., Hura K., The effect of the exogenous phenolic compound, caffeic acid on organogenesis of Galanthus elwesii Hook. cultured in vitro, Biotechnologia., (2), pp.139–145, (2010).
- [4] Bati Ay E., Açıkgöz M.A., Kocaman B., Mesci S., Kocaman B., Yıldırım T., Zinc and phosphorus fertilization in Galanthus elwesii Hook: changes in the total alkaloid, flavonoid, and phenolic content, and evaluation of anti-cancer, anti-microbial, and antioxidant activities, Sci. Hortic. (Amsterdam)., 317, pp.112034, (2023).
- [5] Bati Ay E., Gül M., Açikgöz M.A., Yarilgaç T., Kara Ş.M., Assessment of antioxidant activity of giant snowdrop (Galanthus elwesii hook) extracts with their total phenol and flavonoid contents, Indian J. Pharm. Educ. Res., 52(4), pp.S128–S132, (2018).
- [6] Batı Ay E., Açıkgöz M.A., Kocaman B., Güler S.K., Effect of jasmonic and salicylic acids foliar spray on the galanthamine and lycorine content and biological characteristics in Galanthus elwesii Hook, Phytochem. Lett., 57, pp.140–150, (2023).
- [7] Batı Ay E., Kara Ş.M., Açıkgöz M.A., Effect of phosphorus fertilization on phenolic compounds and antioxidant activity in Galanthus elwesii Hook., Int. J. Agric. Environ. Food Sci., 7(3), pp.690–695, (2023).
- [8] Berkov S., Bastida J., Sidjimova B., Viladomat F., Codina C., Phytochemical differentiation of Galanthus nivalis and Galanthus elwesii (Amaryllidaceae): a case study, Biochem. Syst. Ecol., 36(8), pp.638–645, (2008).
- [9] Berkov S., Bastida J., Sidjimova B., Viladomat F., Codina C., Alkaloid diversity in Galanthus elwesii and Galanthus nivalis, Chem. Biodivers., 8(1), pp.115–130, (2011).
- [10] Berkov S., Bastida J., Viladomat F., Codina C., Analysis of galanthamine-type alkaloids by capillary gas chromatography-mass spectrometry in plants, Phytochem. Anal., 19(4), pp.285–293, (2008).
- [11] Berkov S., Cuadrado M., Osorio E., Viladomat F., Codina C., Bastida J., Three new alkaloids from Galanthus nivalis and Galanthus elwesii, Planta Med., 75(12), pp.1351–1355, (2009).
- [12] Berkov S., Reyes-Chilpa R., Codina C., Viladomat F., Bastida J., Revised NMR data for incartine: an alkaloid from Galanthus elwesii, Molecules., 12(7), pp.1430–1435, (2007).
- [13] Bozkurt B., Coban G., Kaya G.I., Onur M.A., Unver-Somer N., Alkaloid profiling, anticholinesterase activity and molecular modeling study of Galanthus elwesii, South African J. Bot., 113, pp.119–127, (2017).
- [14] Bronze M.R., Figueira M.E., Mecha E., Flavonoids and its contribution to a healthier life, 2012.
- [15] Cozanitis D.A., The snowdrop, wellspring of galanthamine: A brief descriptive and scientific history, Wiener Medizinische Wochenschrift., 171(9–10), pp.205–213, (2021).
- [16] Davis P.H., Flora of Turkey and East Aegen islands, Edinburgh University Press, Edinburgh, 1988.
- [17] Engwa G.A., Nweke F.N., Nkeh-Chungag B.N., Free radicals, oxidative stress-related diseases and antioxidant supplementation, Altern. Ther. Health Med., 28(1), pp.144–128, (2022).
- [18] Fawzi Mahomoodally M., Zengin G., Ibrahime Sinan K., Yıldıztugay E., Lobine D., Ouelbani R., Bensari S., Ak G., Abdullah Yılmaz M., Gallo M., Gallo M., Montesano D., A comprehensive evaluation of the chemical profiles and biological properties of six geophytes from Turkey: sources of bioactive compounds for novel nutraceuticals, Food Res. Int., 140, pp.110068, (2021).
- [19] Gervasi T., Calderaro A., Barreca D., Tellone E., Trombetta D., Ficarra S., Smeriglio A., Mandalari G., Gattuso G., Biotechnological applications and health-promoting properties of flavonols: an updated view, Int. J. Mol. Sci., 23(3), pp.1710, (2022).
- [20] Gong P., Long H., Guo Y., Wang Z., Yao W., Wang J., Yang W., Li N., Xie J., Chen F., Chinese herbal medicines: the modulator of nonalcoholic fatty liver disease targeting oxidative stress, J. Ethnopharmacol., 318, pp.116927, (2024).
- [21] Güner A., Özhatay N., Ekim T., Başer K.H.., Flora of Turkey and the East Aegean islands, Supplement-II, Edinburgh University Press, Edinburgh, 2000.
- [22] Iakovou E., Kourti M., A comprehensive overview of the complex role of oxidative stress in aging, the contributing environmental stressors and emerging antioxidant therapeutic interventions, Front. Aging Neurosci., 14, pp.827900, (2022).
- [23] Jomova K., Raptova R., Alomar S.Y., Alwasel S.H., Nepovimova E., Kuca K., Valko M., Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging, Arch. Toxicol., 97(10), pp.2499–2574, (2023).
[24] Jomova K., Valko M., Advances in metal-induced oxidative stress and human disease, Toxicology., 283(2–3), pp.65–87, (2011).
- [25] Kırgeç Y., Batı-Ay E., Açıkgöz M.A., The effects of foliar salicylic acid and zinc treatments on proline, carotenoid, and chlorophyll content and anti-oxidant enzyme activity in Galanthus elwesii Hook, Horticulturae., 9(9), pp.1041, (2023).
- [26] Klran T.R., Otlu O., Karabulut A.B., Oxidative stress and antioxidants in health and disease, J. Lab. Med., 47(1), pp.1–11, (2023).
- [27] Kontoghiorghes G.J., New iron metabolic pathways and chelation targeting strategies affecting the treatment of all types and stages of cancer, Int. J. Mol. Sci., 23(22), pp.13990, (2022).
- [28] Koskenkorva-Frank T.S., Weiss G., Koppenol W.H., Burckhardt S., The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress, Free Radic. Biol. Med., 65, pp.1174–1194, (2013).
- [29] Kulawik A., Cielecka-Piontek J., Zalewski P., The importance of antioxidant activity for the health-promoting effect of lycopene, Nutrients., 15(17), pp.3821, (2023).
- [30] Lei T.-T., Wang J.-H., Du G.-H., Galantamine, 2018.
- [31] Luo M., Zheng Y., Tang S., Gu L., Zhu Y., Ying R., Liu Y., Ma J., Guo R., Gao P., Gao P., Zhang C., Radical oxygen species: an important breakthrough point for botanical drugs to regulate oxidative stress and treat the disorder of glycolipid metabolism, Front. Pharmacol., 14, pp.1166178, (2023).
- [32] Nikolova M., Gevrenova R., Determination of phenolic acids in Amaryllidaceae species by high performance liquid chromatography, Pharm. Biol., 43(3), pp.289–291, (2005).
- [33] Rana K., Gautam P., A review on antioxidants as therapeutic in use of oxidative stress and neurodegenerative disease, Int. J. Pharm. Qual. Assur., 13(1), pp.77–82, (2022).
- [34] Ren X., Léveillard T., Modulating antioxidant systems as a therapeutic approach to retinal degeneration, Redox Biol., 57, pp.102510, (2022).
- [35] da Silva Campelo M., Neto J.F.C., Lima A.B.N., das Chagas Neto F.C., da Costa Gonzaga M.L., de Aguiar Soares S., Leal L.K.A.M., Ribeiro M.E.N.P., Ricardo N.M.P.S., Polysaccharides and extracts from Agaricus brasiliensis Murill – a comprehensive review, Int. J. Biol. Macromol., 183, pp.1697–1714, (2021).
- [36] Tüzen M., Özdemir M., Chromatographic determination of phenolic acids in the snowdrop by HPLC, Turkish J. Chem., 27(1), pp.49–54, (2003).
- [37] Valko M., Jomova K., Rhodes C.J., Kuča K., Musílek K., Redox- and non-redox-metal-induced formation of free radicals and their role in human disease, Arch. Toxicol., 90(1), pp.1–37, (2016).
- [38] Visioli F., Riso P., Grande S., Galli C., Porrini M., Protective activity of tomato products on in vivo markers of lipid oxidation, Eur. J. Nutr., 42(4), pp.201–206, (2003).