Removal of Heavy Metals from Aqueous Solution Using Fly Ash: Çan Thermal Power Plant, NW Turkey as a Case Study

This study was conducted to investigate use of fly ash created by fluidized bed combustion Can Thermal Power Plant for the removal of heavy metals from aqueous solutions as a low-cost adsorbent. The adsorption capacity of metal ions (Cd, Co, Cr, Cu, Ni, Mn, Pb and Zn) from aqueous solution onto coal fly ash was studied in batch experiments, which were carried out at room temperature to investigate the efficiency of the adsorbent for removing selected metals. The highest adsorption capacities of fly ash were determined for Cu and Cd metals, with values of 67.29% and 53.66%, respectively. The following metal removal capacity of fly ash was determined: Cu > Cd > Pb > Zn > Cr > Co > Mn > Ni. The ash originating from coal combustion thermal power plant may be considered a viable adsorbent for metal ions from aqueous solutions at neutral pH conditions and with small amounts of fly ash.

Sulu Çözeltideki Ağır Metallerin Uçucu Kül Kullanarak Giderimi: Çan Termik Santrali (KB Türkiye) Örneği

Bu çalışmada ucuz bir adsorbent olan uçucu külün sulu çözeltideki ağır metallerin gideriminde etkinliğinin belirlenmesi amaçlanmıştır. Bu amaçla akışkan yataklı Çan Termik Santrali uçucu külleri adsorbent olarak kullanılarak sulu çözeltideki bazı metal iyonlarını (Cd, Co, Cr, Cu, Ni, Mn, Pb ve Zn) adsorpsiyon kapasitesi oda sıcaklığında kesikli deneyler ile saptanmıştır. Deneysel bulgular ile uçucu külün en yüksek adsorpsiyon kapasitesinin Cu (%67.29) ve Cd (%53.66) metal iyonlarında olduğu gözlenmiştir. Uçucu kül kullanarak sulu çözeltideki metal giderimi dizilimi Cu> Cd> Pb> Zn> Cr> Co> Mn> Ni şeklindedir. Nötr pH koşulları ve az miktardaki uçucu külün sulu çözeltideki metal gideriminde uygun bir adsorbent olarak kullanılabileceği tespit edilmiştir.

Kaynakça

Alinnor, IJ. 2007. Adsorption of heavy metal ions from aqueous solution by fly ash. Fuel, 86: 853-857.

ASTM, 2008. ASTM C618 standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. In: Annual book of ASTM standards, Volume 4.02,West Conshohocken: ASTM International.

Azzam, R., Lambarki, M. 2004. Evaluation concept and testing method for heavy matal contaminant transport in the underground. In: R. Hack, R. Azzam, R. Charlier [Eds], Engineering Geology for Infrastructure Planning in Europe. Springer, Germany, pp. 117-124.

Baba, A. 2003. Geochemical assessment of environmental effects of ash from Yatagan (Mugla-Turkey) thermal power plant. Water Air Soil Poll., 144: 3-18.

Baba, A., Kaya, A., Birsoy, Y. 2003. The effect of Yatagan thermal power plant (Mugla-Turkey) on the quality of surface and ground waters. Water Air Soil Poll., 149: 93-111.

Baba, A., Gurdal, G., Sengunalp, F., Ozay, O. 2008. Effects of leachant temperature and pH on leachability of metals from fly ash: Case Study: Can Thermal Power Plant, Province of Canakkale, Turkey. Environ Monit Assess., 139(1-3): 287-298.

Baba, A., Gurdal, G., Sengunalp, F. 2010. Leaching characteristics of fly ash from fluidized bed combustion thermal power plant: Case study: Çan (Çanakkale-Turkey). Fuel Process Technol., 91(9): 1073-1080.

Backstrom, M., Sartz, L. 2011. Mixing of acid rock drainage with alkaline ash leachates-fate and immobilisation of trace elements. Water Air Soil Poll. 222: 377-389.

Banerjee, S., Sharmab, GC., Chattopadhyayaa, MC., Sharma, YC. 2014. Kinetic and equilibrium modeling for the adsorptive removal of methylene blue from aqueous solutions on of activated fly ash. J Environ Chem Eng., 2(3) 1870-1880.

Bayat, B. 2002. Comparative study of adsorption properties of Turkish fly ashes I. The case of nickel(II), copper(II) and zinc(II). J Hazard Mater., B95: 251-273.

Bilski, J., Kraft, C., Jacob, D., Soumaila, F., Farnsworth, A. 2013. Leaching of Selected Trace Elements from Plant Growth Media Composed of Coal Fly Ash (FA), and of FA amended with Sphagnum Peat Moss and Soil. Part 1: Leaching of trace Elements from Group 1: Cesium (Cs) and Lithium (Li), and from Group 2: Beryllium (Be), Strontium (Sr), and Barium (Ba). Res J Chem Environ., 1(1): 07-18.

Bozcu, M., Akgun, F., Gurdal, G., Yesilyurt, SK., Karaca, O. 2008. Sedimentologic, petrologic, geochemical and palinologic examination of C¸ an Yenice Bayramic (C¸ anakkale) lignite basin. Report of the Scientific and Technological Research Council of Turkey, Ankara.

Celik, O., Damcı, E., Piskin, S. 2008. Characterization of fly ash and its effects on the compressive strength properties of Portland Cement. Indian J Eng Mater S., 15: 433-440.

Cetin, S., Pehlivan, E. 2007. The use of fly ash as a low cost, environmentally friendly alternative to activated carbon for the removal of heavy metals from aqueous solutions. Colloid Surface A., 298: 83-87.

Cokca, E. 2001. Use of class C fly ashes for the stabilization of an expansive soil. J Geotech Geoenviron., 127(7): 568-573.

Deborah, AK., Ernest, EA. 1981. Effect of leachate solutions from fly and bottom ash on groundwater quality. J Contam Hydrol., 54: 341-356.

Erol, M., Kucukbayrak, S., Ersoy Mericboyu, A., Ulubas, T. 2005. Removal of Cu2+ and Pb2+ in aqueous solutions by fly ash. Energ Convers Manage., 46: 1319-1331.

Fernandez-Turiel, JL., Carvalho, W., Cabanas, M., Querol, X., Lopez, A. 1994. Mobility of heavy metals from coal fly ash. Environ Geol., 23: 264-270.

Gehrs, CW., Shriner, DS., Herbes, SE. 1981. Environmental health and safety implications of increased coal utilization. In: M.A. Elliot [ed.], Chemistry of Coal Utilization Second Supplementary Volume, pp. 2194-2219.

Georgakopoulos, A., Filippidis, A., Kassoli-Fournaraki, A. 1994. Morphology and trace element contents of the fly ash from Main and Northern lignite fields, Ptolemais, Greece. Fuel, 73: 1802-1804.

Georgakopoulos, A., Filippidis, A., Kassoli-Fournaraki, A., Fernandez-Turiel, JL., Llorens, JF., Mousty, F. 2002. Leachability of major and trace elements of fly ash from Ptolemais Power Station, Northern Greece. Energ Source., 24(2): 103-113.

Gitari, MW., Petrik, LF., Etchebers, O., Key, DL., Iwuoha, E., Okujeni, C. 2006. Treatment of acid mine drainage with fly ash: removal of major contaminants and trace elements. J Environ Sci Heal A., 41: 1729-1747.

Gitari, MW., Petrik LF., Etchebers, O., Key, DL., Iwuoha, E., Okujeni, C. 2008a. Passive Neutralization of Acid Mine Drainage by Fly Ash and its Derivatives: A Column Leaching Study, Fuel, 87: 1637-1650.

Gitari, WM., Petrik, LF., Etchebers, O., Key, DL., Okujeni, C. 2008b. Utilization of Fly Ash for Treatment of Coal Mines Wastewater: Solubility Controls on Major Inorganic Contaminants, Fuel, 87: 2450-2462.

Gitari, WM., Petrik, LF., Key, DL., Okujeni, C. 2010. Partitioning of major and trace inorganic contaminants in fly ash acid mine drainage derived solid residues. Int J Environ Sci Tech., 7(3): 519-534.

Gunduz, O., Baba, A. 2008. Fate of acidic mining lakes in Can lignite district, Turkey. In: Proceedings of 36th IAH Congress, Toyama, Japan Integrating Groundwater Science and Human Well-being.

Inyang, HI. 1992. Energy related waste materials in geotechnical systems: durability and environmental considerations. In: R.K. Singhal, A.K. Mehrotra, K. Fytas, J.L. Collins [eds.], Environmental Issues and Waste Management in Energy and Minerals Production. Balkema, Rotterdam, The Netherlands, pp. 1157-1164.

Kamon, M., Katsumi, T., Sano, Y. 2000. MSW fly ash stabilized with coal ash for geotechnical application. J Hazard Mater., 76(2-3): 265-283.

Laumakis, TM., Martin, JP., Kim, YC. 1996. Characterization of fly ash and other by-products as sorptive subgrades for environmental facility sites. In: M. Kamon [ed.], Environmental Geotechnics. Balkema, Rotterdam, The Netherlands, pp. 797- 801.

Lin, CJ., Chang, JE. 2001. Effect of fly ash characteristics on the removal of Cu (II) from aqueous solution. Chemosphere, 44: 1185-1192.

Luo, J., Shen, H., Markstrom, H., Wang, Z., Niu, Q. 2011. Removal of Cu2+ from Aqueous Solution using Fly Ash. J Miner Mater Charac Eng., 10(6): 561-571.

Mandal, A., Sengupta, D. 2002. Characterization of fly ash from coal-based thermal power station at Kolaghat- Possible environmental hazards. Indian J Environ Protec., 22(8): 885- 891.

McCrone, WC., Delly, JG. 1973. The Particle Atlas. USA, Elsevier.

McMurphy, LM., Biradar, DP., Taets, C., Rayburn, AL. 1996. Differential effects of weathered coal fly ash and fly ash leachate on the maize genome. Arch Environ Contam Toxicol., 31: 166-169.

Naiya, TK., Das, SK. 2016. Removal of Cr(VI) from aqueous solution using fly ash of different sources. Desalin Wat Treat., 57(13): 5800-5809.

Okumusoglu, D., Gunduz, O. 2013. Hydrochemical status of an Acidic Mining Lake in Can-Canakkale, Turkey. Water Environ Res., 85: 604-620.

Osmanlioglu, AE. 2014. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor. Waste Manag Res., 32(5): 366-370

Ozmen, E. 2011. Termik santrallerden kaynaklanan küllerin yönetimi. http://www.tehlikeliatik.com/public/dosyalar/ Sunumlar/tehlikeli_atiklar/antalya-kul-sunum.pdf

Perez-Lopez, R., Cama, J., Nieto, JM., Ayora, C. 2007a. The iron-coating role on the oxidation kinetics of a pyritic sludge doped with fly ash. Geochim Cosmochim Ac., 71: 1921-1934

Perez-Lopez, R., Nieto, JM., Almodovar, GR. 2007b. Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: Column experiments. Chemosphere, 67: 1637-1646.

Qureshi, A., Jia, Y., Maurice, C., Ohlander, B. 2016. Potential of fly ash for neutralisation of acid mine drainage. Environ Sci Pollut Res., 23: 7083-17094.

Ricou, P., Lecuyer, I., Le Cloirec, P. 1998. Influence of pH on removal of heavy metallic cations by fly ash in aqueous solution. Environ Tech., 19: 1005-1016.

Sahoo, PK., Tripathy, S., Panigrahi, MK., Equeenuddin, MD. 2013. Evaluation of the use of an alkali modified fly ash as a potential adsorbent for the removal of metals from acid mine drainage. App Water Sci., 3: 567-576.

Sanliyuksel Yucel, D., Baba, A. 2013. Geochemical Characterization of acid mine lakes in Northwest Turkey and their effect on the environment. Arch Environ Contam Toxicol., 64: 357-376.

Sanliyuksel Yucel, D., Yucel, MA., Baba, A. 2014. Change detection and visualization of acid mine lakes using time series satellite image data in geographic information systems (GIS): Can (Canakkale) County, NW Turkey. Environ Earth Sci., 72(11): 4311-4323.

Sanliyuksel Yucel, D., Balci, N., Baba, A. 2016. Generation of acid mine lakes associated with abandoned coal mines in NW Turkey. Arch Environ Contam Toxicol., 70 (4): 757-782.

Sanliyuksel Yucel, D., Baba, A., 2016. Prediction of acid mine drainage generation potential of various lithologies using static tests: Etili coal mine (NW Turkey) as a case study. Environ Monit Assess. 188: 473, 16 pages. doi:10.1007/s10661-016- 5462-5

Sanliyuksel Yucel, D., Yucel, M.A. 2016. Determining Hydrochemical Characteristics of Mine Lakes from Abandoned Coal Mines and 3D Modelling of Them Using Unmanned Aerial Vehicle. Pamukkale Uni J Eng Sci., doi: 10.5505/pajes.2016.37431

Shreya, N., Paul, B. 2012. Utilization of Fly Ash as a carrier in Biofertilizer and Biopesticide Formulation of Chandrapura Thermal Power Station, India. Twenty-Seventh International Conference on Solid Waste Technology and Management (ISCW2012), PA, U.S.A.

Stouraiti, C., Xenedis, A., Paspaliaris, I. 2002. Reduction of Pb, Zn and Cd availability from tailings and contaminated soils by the application of lignite fly ash. Water Air Soil Poll., 137: 247-265.

Tofan, L., Paduraru, C., Bilba, D., Rotariu, M. 2008. Thermal power plants ash as sorbent for the removal of Cu(II) and Zn(II) ions from wastewaters. J Hazard Mater., 156(1-3): 1-8.

Tokyay, M., Erdogan, K. 1998. Characterization of fly ash which are obtained from thermal power plants in Turkey, J Turkish Cement Manufac Assoc., August issue, pp. 40.

Weng, CH., Huang, CP. 2004. Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash. Colloid Surface A., 247: 137-143.

Xenidis, S., Mylona, E., Paspaliaris, I. 2002. Potential use of lignite fly ash for the control of acid generation from sulphidic wastes. Waste Manage., 22: 631-641.

Yeheyis, MB., Shang, JQ., Yanful, EK. 2009. Long-term evaluation of coal fly ash and mine tailings co-placement: A site-specific study. J Environ Manage., 91: 237-244.

Yucel, MA, Turan, RY. 2016. Areal Change Detection and 3D Modeling of Mine Lakes Using High-Resolution Unmanned Aerial Vehicle Images. Arab J Sci Eng., 41: 4867-4878.

Kaynak Göster