The Effects of Microwave Energy to the Drying of Apple (Gala) Slices

In this work, the drying behaviors of apple slices with 2, 4, and 6mm thickness were investigated in a microwave conveyor dryer. The effects of different microwave power levels (1050 W, 1500 W and 2100 W) and conveyor speeds (0.175, 0.210 ve 0.245 m/ min) on drying time, color changing and energy consumption have been investigated. The results show that drying time and energy consumption decreases considerably with increasing microwave power and with decreasing conveyor speed. Then, the mathematical models were fitted to the experimental data. According to the results, the Page Model was found to best explain thin layer drying behavior of the apple slices as compared to the other models. Fick’s diffusion model was applied to calculate the effective diffusivities. The effective diffusivity values were found between 1.1916×10−8 m2 /s and 2.7540×10−7 m2 /s. The activation energies were calculated as 156.65, 40.18 and 17.90 W/g for samples thickness of 2, 4 and 6 mm, respectively. At the end of the drying process, minimum energy consumption for 2mm at 0.175 m/min conveyor speed and 2100 W power is calculated as 1.34 kWh. From the results of colour quality, the colour criteria nearest the those of apple slices occurred at 1050 W and 0.210 m/min.

Elma (Gala) Dilimlerinin Kurutulmasına Mikrodalga Enerjisinin Etkileri

Bu çalışmada 2, 4 ve 6mm olarak dilimlenmiş elmanın mikrodalga kurutucuda kuruma davranışı araştırılmıştır. Mikrodalga gücünün (1050 W, 1500 W ve 2100 W) ve konveyör bant hızının (0.175, 0.210 ve 0.245 m/dk) kuruma zamanına, renk değişimine ve enerji tüketimine etkisi araştırılmıştır. Elde edilen sonuçlara göre kuruma zamanı ve enerji tüketiminin mikrodalga gücü ve konveyör bant hızının artmasıyla azaldığı görülmüştür. Daha sonra deneysel sonuçlar matematiksel modellere uygulanmıştır. Sonuçlara göre Page model diğer modeller ile karşılaştırıldığında en uygun model olarak tespit edilmiştir. Fick difüzyon modeli de difüzyon katsayısının tespitinde kullanılarak 1.1916×10−8 m2 /s ve 2.7540×10−7 m2 /s aralığında difüzyon katsayılarının değiştiği belirlenmiştir. Aktivasyon enerjisi de 2, 4 ve 6 mm dilimler için sırasıyla 156.65, 40.18 ve 17.90 W/g olarak hesaplanmıştır. Kurutma prosesinin sonucunda 2mm dilim kalınlığındaki elma için 0.175 m/dk konveyör hızında ve 2100 W gücünde minimum enerji tüketimi 1.34 kWh olarak hesaplanmıştır. Renk kalitesine bakıldığında da taze elmaya en yakın değer 1050 W ve 0.210 m/dk değerlerinde görülmüştür.

___

Aktaş, M., Ceylan, I., Yılmaz, S. 2009. Determination of drying characteristics of apples in a heat pump and solar dryer. Desalination, 239: 266–758.

Akyol, U., Kahveci, K. and Cihan, A. 2012. Effect of drying air pressure on cotton bobbin drying process. J. Int. Sci Publ. Materials, Methods and Technologies. 6(2): 198-204.

Albanese, D., Cinquanta, L., Russo, L., Crescitelli, S., Farina, M., Brasiello, A., Di Matteo, M. 2006. Modelling convective and microwave drying of potatoes slices. 13th World Congress of Food Science and Technology, Nantes, France.

Alibas, I. 2007. Microwave air and combined microwaveair drying parameters of pumpkin slices. LWT. 40. pp. 1445–1451.

Andres, A., Bilbao, C. and Fito, P. 2004. Drying Kinetics of Apple Cylinders Under Combined Hot Air-Microwave Dehydration. J. Food Eng.. 63: 71-78.

Arslan, D., Ozcan, MM. 2011. Study the effect of sun, oven and microwave drying on quality of onion slices. LWT - Food Science and Technology. 43: 1121-1127.

Aydogdu, A., Sumnu, G., Sahin, S. 2013. Infrared assisted microwave drying of eggplants. 4th International Conference on Food Engineering and Biotechnology IPCBEE IACSIT Press, Singapore DOI. 10.7763/IPCBEE. 50(2).

Bi, J., Yang, A., Liu, X., Wu, X., Chen, Q., Wang, Q., Lv, J., Wang, X. 2015. Effects of pretreatments on explosion puffing drying kinetics of apple chips. LWT - Food Science and Technology. 60: 1136-1142.

Çelen, S., Kahveci, K. 2013a. Microwave drying behavior of tomato slices. CJFS. 31 (2): 132-138.

Çelen, S., Kahveci, K. 2013b. Microwave drying behaviour of apple slices, Proceedings of the IMechE, Part E. Journal of Process Mechanical Engineering. 227(4): 264-272.

Darvishi, H., Asl, AR., Asghari, A., Azadbakht, M., Najafi, G., Khodaei, J. 2014. Study of the drying kinetics of pepper. JSSAS. 13: 130–138.

Dadali, G., Apar, DK., Ozbek, B. 2007. Microwave drying kinetics of ocra. Drying Technology. 25: 917–924.

Doymaz, İ., Tuğrul, N., Pala, M. 2006. Drying Characteristics of Dill and Parsley Leaves. J. Food Eng. 77(3): 559-565.

Erdem, T. 2006. Drying by microwave energy of washed red pepper by ozonated water. (MSc. Thesis.) University of Çukurova. Turkey. (in Turkish)

Ertekin, C., Yaldiz, O. 2004. Drying of eggplant and selection of a suitable thin layer drying model. J. Food Eng. 63: 349– 359.

Evin, D. 2012. Thin layer drying kinetics of Gundelia tournefortii L. Food Bioprod. Process. 90: 323–332.

Işık, E., Izli, N., Bayram, G., Turgut, I. 2011. Drying kinetic and physical properties of green laird lentil (Lens culinaris) in microwave drying. AJB. 10: 3841–3848.

Kassem, AS., Shokr, AZ., El-Mahdy, AR., Aboukarima, AM., Hamed, EY. 2011. Comparison of drying characteristics of Thompson seedless grapes using combined microwave oven and hot air drying. JSSAS. 10: 33–40.

Khatchatourian, OA. 2012. Experimental study and mathematical model for soya bean drying in thin layer. BSE. 113: 54- 64.

Kutlu, N., İşçi, A. 2014. Evaluation of thin-layer drying models for describing microwave drying of zucchini. 2nd International Congress on Food Technology, Kuşadası, TURKEY, November 05-07.

Maskan, M. 2000. Microwave/air and microwave finish drying of banana. J. Food Eng. 44: 71-78.

Menges, HO., Ertekin, C. 2006. Mathematical modeling of thin layer drying of Golden apples. J. Food Eng. 77: 119–125.

Meisami-asl, E., Rafiee, S., Keyhani, A., Tabatabaeefar, A. 2010. Determination of suitable thin layer drying curve model for apple slices (variety-Golab). POJ. 3(3): 103-108.

Mohammadi, B., Busaleyki, S., Modarres, R., Yarionsorudi, E., Fojlaley, M., Andik, S. 2014. Investigation of microwave application in agricultural production drying. IJTRA. 2 (1): 69-72.

Ozbek, B., Dadali, G. 2007. Thin layer drying characteristics and modeling of mint leaves undergoing microwave treatment. J. Food Eng. 83: 541–549.

Rayaguru, K., Routray, W. 2011. Microwave drying kinetics and quality characteristics of aromatic Pandanus amaryllifolius leaves. IFRJ. 18(3): 1035-1042.

Sarı, M., Karaaslan, S. 2014. Ananasın mikrodalga ile kurutulması ve uygun kuruma modelinin belirlenmesi. SDÜ Ziraat Fakültesi Dergisi. 9 (1): 42-50. (in Turkish)

Schössler, K., Jäger, H., Knorr, D. 2012. Effect of continuous and intermittent ultrasound on drying time and effective. J. Food Eng. 108: 103–110.

Toğrul, H. 2005. Simple modeling of infrared drying of fresh apple slices. J. Food Eng. 71: 311-323.

Vega-Galvez, A., Miranda, M., Diaz, LP., Lopez, L., Rodriguez, K., Di Scala, K. 2010. Effective moisture diffusivity determination and mathematical modelling of the drying curves of the olive-waste cake. Bioresour Technol. 101: 7265- 7270.

Wang, Z., Sun, J., Chen, F., Liao, X., Hu, X. 2007. Mathematical modeling on thin layer microwave drying of apple pomace with and without hot air pre-drying. J. Food Eng. 80: 536– 544.

Worknech, T.S., Raghavan, V., Gariepy, Y. 2011. Microwave assisted hot air ventilation drying of tomato slices. International Conference on Food Engineering and Biotechnology. 150– 161.

Zarein, M., Samadi, SH., Ghobadian, B. 2015. Investigation of microwave dryer effect on energy efficiency during drying of apple slices. JSSAS. 14: 41–47.