Öğretmenlerin Fen Öğretiminde Modeller ve Modelleme ile İlgili Pedagojik Alan Bilgileri

Fen bilimlerinde modeller ve modelleme, bilim insanları için olduğu gibi öğretmenler ve öğrenciler için de fen bilimleri öğretiminde önemli rol oynamaktadır. Bu çalışma ilk ve ortaokul seviyesinde (3-8. Sınıflar) fen bilimleri dersi veren farklı mesleki deneyim seviyelerindeki 36 öğretmenin model kullanımını araştırmakta ve mesleki deneyime dayalı farklılıkları pedagojik alan bilgisi teorik çerçevesiyle ve nitel yaklaşımla incelemektedir. Araştırmada öğretmenlerden altı temel açık uçlu ve on üç alt sorudan oluşan öz değerlendirme formu ile fen öğretiminde model ve model kullanımına dair teorik bilgilerini, düşüncelerini, tercihlerini, sınıf içi uygulamalarını ve deneyimlerini ifade etmeleri istenmiştir. Elde edilen öz değerlendirme formları önceden belirlenmiş ve ortaya çıkan kodlar aracılığıyla içerik analizine tabi tutulmuştur. Veri analizleri modeller ve modelleme konusundaki pedagojik alan bilgisinin farklı mesleki deneyim seviyelerindeki fen bilimleri öğretmenlerinin model ve model kullanımıyla ilgili öğretimlerinin farklılaşmasına yol açan önemli bir faktör olduğunu göstermiştir. Çalışmanın bulgularından yola çıkılarak hizmet öncesi ve hizmet içi eğitimlerde öğretmenlerin bilimsel modellerin ve modellemenin doğası hakkındaki bilgilerini ve pedagojik alan bilgilerini artıracak anlamlı tecrübelerin öğretmenlere sunulması gerektiği önerilmektedir.

Teachers’ Pedagogical Content Knowledge for Models and Modeling in Science Teaching

Models and modeling have fundamental roles in science teaching for students and teachers, as they are essential for scientists. This study investigates 36 primary and middle school (3rd – 8th grades) science teachers’ model use and examines differences stemming from teaching experience through the pedagogical content knowledge theoretical framework and qualitative approach. In this study, by self-evaluation form including six main open-ended questions and thirteen sub-questions, teachers were requested to express their theoretical knowledge, thoughts, preferences, teaching practices, and experiences regarding model and model use in science teaching. Content analysis was conducted to the self-evaluation forms by pre-determined and emerging codes. Data analysis revealed that the pedagogical content knowledge for modeling is an important factor that differentiates teaching practices of science teachers for models and modeling with different teaching experiences. The findings of this study imply that in-service and pre-service teacher education programs should provide meaningful experiences that increase epistemological metamodeling knowledge and pedagogical content knowledge of scientific models and modeling practices.

___

  • Abd-El-Khalick, F. (2013). Teaching with and about nature of science, and science teacher knowledge domains. Science & Education, 22(9), 2087-2107.
  • Abd-El-Khalick, F., & Lederman, N. G. (2000). Improving science teachers’ conceptions of nature of science: A critical review of the literature. International Journal of Science Education, 22(7), 665-701.
  • Akın, F. N., & Uzuntiryaki-Kondakci, E. (2018). The nature of the interplay among components of pedagogical content knowledge in reaction rate and chemical equilibrium topics of novice and experienced chemistry teachers. Chemistry Education Research and Practice, 19(1), 80-105.
  • Aktan, M. B. (2013). Pre-service science teachers' views and content knowledge about models and modeling. Education and Science, 38(168), 398-410.
  • Aktan, M. B., Kaynak, S., Abdüsselam, Z., & Ardoğan, E. (2019). Güncel fen öğretim programları ve ders kitaplarında model ve modelleme kavramlarının analizi. Cumhuriyet Uluslararası Eğitim Dergisi, 8(1), 44-69.
  • Appleton, K. (2002). Science activities that work: Perceptions of primary school teachers. Research in Science Education, 32, 393-410.
  • Arslan, Z., & Doğdu, S. (1993). Eğitim teknolojisi uygulamaları ve eğitim araç gereçleri. Ankara: Tekışık Ofset.
  • Arzi, H. J., & White, R. T. (2007). Change in teachers’ knowledge of subject matter: A 17-year longitudinal study. Science Education, 92(2), 221-251.
  • Aslan, A., & Yadigaroğlu, M. (2013). Eğitim fakültelerindeki fen ve matematik lisansüstü öğrencilerinin model ve modelleme hakkındaki görüşleri. Eğitim ve Öğretim Araştırmaları Dergisi, 2(3), 123-132.
  • Berber, N. C., & Güzel, H. (2009). Fen ve matematik öğretmen adaylarının modellerin bilim ve fendeki rolüne ve amacına ilişkin algıları. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 21, 87-97.
  • Besson, U., Borghi, L., De Ambrosis, A., & Mascheretti, P. (2007). How to teach friction: Experiments and models. American Journal of Physics, 75(12), 1106-1113.
  • Bilal, E. (2010). Elektrik konusunun modelleme yoluyla öğretiminin kavramsal anlama, akademik başarı ve epistemolojik inançlara etkisi. Yayımlanmamış Doktora Tezi. Dokuz Eylül Üniversitesi, İzmir, Türkiye.
  • Chambers, S. K., & Andre, T. (1997). Gender, prior knowledge, interest and experience in electricity and conceptual change text manipulations in learning about direct current. Journal of Research in Science Teaching, 34(2), 107-123.
  • Chittleborough, G. D., Treagust, D. F., Mamiala, T. L. & Mocerino, M. (2005). Students' perceptions of the role of models in the process of science and in the process of learning. Research in Science and Technological Education, 23(2), 195-212.
  • Clotfelter, C. T., Ladd, H. F., & Vigdor, J. L. (2007). Teacher credentials and student achievement in high school: A cross-subject analysis with student fixed effects. Economics of Education Review, 26(6), 673-782.
  • Coll, R. K., France, B., & Taylor, I. (2005). The role of models/and analogies in science education: Implications from research. International Journal of Science Education, 27(2), 183-198.
  • Çelik, S. (2015). Fen bilgisi öğretmen adaylarının bilimsel modeller ile ilgili anlayışları. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 9-26.
  • Çilenti, K. (1985). Fen eğitimi teknolojisi. Ankara: Kadıoğlu Matbaası.
  • Çoban, G. Ü., & Ergin, Ö. (2013). Modellemeye dayalı fen öğretiminin etkilerinin bilimsel bilgi açısından incelenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 28(2), 505-520.
  • Davis, E. A., & Krajcik, J. (2005). Designing educative curriculum materials to promote teacher learning. Educational Researcher, 34(3), 3-14.
  • Davis, E. A., Kenyon, L., Hug, B., Nelson, M., Beyer, C., Schwarz, C., & Reiser, B. J. (2008, January). MoDeLS: Designing supports for teachers using scientific modeling. Paper presented at the Association for Science Teacher Education, St. Louis, MO, USA.
  • De Jong, O., van Driel, J.H., & Verloop, N. (2005). Preservice teachers’ pedagogical content knowledge of using particle models in teaching chemistry. Journal of Research in Science Teaching, 42(8), 947-964.
  • Demirdöğen, B., Hanuscin, D. L., Uzuntiryaki-Kondakci, E., & Köseoğlu, F. (2016). Development and nature of preservice chemistry teachers’ pedagogical content knowledge for nature of science. Research in Science Education, 46(4), 575-612.
  • Develaki, M. (2007). The model-based view of scientific theories and the structuring of school science programmes. Science & Education, 16(7), 725-749.
  • Didiş, N. (2015) The analysis of analogy use in the teaching of introductory quantum theory. Chemistry Education: Research and Practice, 16, 355-376.
  • Didiş, N., & Eryılmaz, A. (2010, August). Students’ understanding of scientific models: A modern physics course case. Paper presented at The European Conference on Educational Research (ECER) Conference, Helsinki, Finland.
  • Didiş Körhasan, N., & Özcan, Ö. (2015). Examination of the variation in students' problem solving approaches due to the use of mathematical models in Doppler Effect. Hacettepe University Journal of Education, 30(3), 87-101.
  • Didiş, N., & Redish, E. F. (2010, Eylül). Modern fizikte kullanılan modeller: Öğrenci görüşü. IX. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi’nde sunulan sözlü bildiri, İzmir, Türkiye.
  • Didiş, N., & Yıldırım, U. (2012, July). Modeling activities with prospective physics teachers. Paper presented at the World Conference on Physics Education, İstanbul, Turkey.
  • Duit, R. (1991). On the role of analogies and metaphors in learning science. Science Education, 75(6), 649-672.
  • Düşkün, İ. (2011). Güneş-Dünya-Ay modeli geliştirilmesi ve fen bilgisi öğretmen adaylarının astronomi eğitimindeki akademik başarılarına etkisi, Yayımlanmamış Yüksek Lisans Tezi. İnönü Üniversitesi, Malatya, Türkiye.
  • Düşkün, İ., & Ünal, Ü. (2015). Modelle öğretim yönteminin fen eğitimindeki yeri ve önemi. Mehmet Akif Ersoy Üniversitesi Eğitim Bilimleri Enstitüsü Dergisi, 4(6), 1-18.
  • Ergin, İ., Özcan, İ., & Sarı, M. (2012). Farklı akademik unvanlara sahip fen öğretmenlerinin branşlara göre model ve modelleme hakkındaki görüşleri. Journal of Educational and Instructional Studies in the World, 2(1), 142-159.
  • Fraenkel, J. R., & Wallen, N. E. (2000). How to design & evaluate research in education. Boston, MA: McGraw Hill.
  • Friedrichsen, P. J., Abell, S. K., Pareja, E. M., Brown, P. L., Lankford, D. M., & Volkmann, M. J. (2009). Does teaching experience matter? Examining biology teachers' prior knowledge for teaching in an alternative certification program. Journal of Research in Science Teaching, 46(4), 357-383.
  • Friedrichsen, P., & Dana, T. (2005). Substantive-level theory of highly regarded 8 secondary biology teachers’ science teaching orientations, Journal of Research in Science Teaching, 42(2), 216-244.
  • Gilbert, J. K. (1993). Models and modelling in science education. Hatfield, Herts: Association for Science Education.
  • Gilbert, J. K. (2002). Modelling, teachers' views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369-387.
  • Gilbert, J. K., & Boulter, C. J. (1998). Learning science through models and modelling. In B. J. Fraser, & K. G. Tobin (Eds.), International Handbook of Science Education (pp. 53-56). Dordrecht, Netherlends: Springer.
  • Gilbert, J. K., & Boulter, C. J. (2000). Developing models in science education. Dordrecht, Netherlands: Kluwer Academic Publishers.
  • Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In Gilbert J.K., & Boulter C.J. (Eds.) Developing models in science education (pp. 3-17). Dordrecht, Netherlends: Springer.
  • Grossman, P. (1990). The making of a teacher. New York: Teachers College Press.
  • Gülçiçek, Ç., & Güneş, B. (2004). Fen öğretiminde kavramların somutlaştırılması: Modelleme stratejisi, bilgisayar simülasyonları ve analojiler. Eğitim ve Bilim, 29(134), 36-48.
  • Gümüş, İ., Demir, Y., Koçak, E., Kaya, Y., & Kırıcı, M. (2008). Modellerle öğretimin öğrenci başarısına etkisi. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 10(1), 65-90.
  • Güneş, B., Bağcı, N., & Gülçiçek, Ç. (2004). Fen bilimlerinde kullanılan modellerle ilgili öğretmen görüşlerinin tespit edilmesi. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 4(7), 1-14.
  • Güneş, B., Gülçiçek, Ç., & Bağcı, N. (2004). Eğitim fakültelerindeki fen ve matematik öğretim elemanlarının model ve modelleme hakkındaki görüşlerinin incelenmesi. Türk Fen Eğitimi Dergisi, 1(1), 35-48.
  • Günther, S. L., Fleige, J., zu Belzen, A. U., & Krüger, D. (2019). Using the case method to foster preservice biology teachers’ content knowledge and pedagogical content knowledge related to models and modeling. Journal of Science Teacher Education, 30(4), 321-343.
  • Halloun, I. A. (2007). Mediated modeling in science education. Science & Education, 16(7), 653-697.
  • Harman, G. (2012, Haziran). Fen bilgisi öğretmen adaylarının model ve modelleme ile ilgili bilgilerinin incelenmesi. X. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi’nde sunulan sözlü bildiri, Niğde, Türkiye.
  • Harrison, A. G. (2001). How do teachers and textbook writers model scientific ideas for students? Research in Science Education, 31(3), 401-435.
  • Harrison, A. G. (2001, March) Models and PCK: Their relevance for practicing and preservice teachers. Paper presented at the Annual Meeting of the National Association of Research in Science Teaching, St. Louis, MO, USA.
  • Harrison, A. G., & Treagust, D. F. (1998). Modelling in science lessons: Are there better ways to learn with models? School Science and Mathematics, 98(8), 420-429.
  • Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple-model use in grade 11 chemistry. Science Education, 84(3), 352-381.
  • Henze, I., van Driel, J. H., & Verloop, N. (2007). Science teachers' knowledge about teaching models and modelling in the context of a new syllabus on public understanding of science. Research in Science Education, 37(2), 99-122.
  • Henze, I., van Driel, J. H., & Verloop, N. (2008). Development of experienced science teachers’ pedagogical content knowledge of models of the solar system and the universe. International Journal of Science Education, 30(10), 1321-1342.
  • Hestenes, D. (1996, August). Modeling methodology for physics teachers. Paper presented at the International Conference on Undergraduate Physics Education, College Park, MD, USA.
  • Justi, R. S., & Gilbert. J. K.(2002). Modelling, teachers’ views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369-387.
  • Justi, R., & Van Driel, J. (2005). The development of science teachers' knowledge on models and modelling: Promoting, characterizing, and understanding the process. International Journal of Science Education, 27(5), 549-573.
  • Kock, Z. J. (2018). Electrical models in physics textbooks: Enabling or restricting inquiry-based teaching? In Finlayson, O. E. , McLoughlin, E., Erduran, S., & Childs, P. (Eds.), Electronic Proceedings of the ESERA 2017 Conference. Research, Practice and Collaboration in Science Education, Part 1 (pp. 212-223). Dublin, Ireland: Dublin City University. ISBN 978-1-873769-84-3
  • Köksal, E. A., & Yıldırım, H. (2016). Fen ve matematik öğretmenlerinin bilimsel model hakkındaki görüşlerinin incelenmesi. Hasan Ali Yücel Eğitim Fakültesi Dergisi, 13(3), 113-130.
  • Köse, E. Ö., & Gül, Ş. (2016). Biyoloji öğretmeni adaylarının bilimsel modeller ile ilgili anlayışları. Uşak Üniversitesi Sosyal Bilimler Dergisi, 9(27/3), 162-180.
  • Loughran, J., Mulhall, P., & Berry, A. (2004). In search of pedagogical content knowledge in science: Developing ways of articulating and documenting professional practice. Journal of Research in Science Teaching, 41(4), 370-391.
  • Lumpe, A. T. (2007). Application of effective schools and teacher quality research to science teacher education. Journal of Science Teacher Education, 18, 345-348.
  • Magnusson, S., Krajcik, J. S., & Borko, H. (1999). Nature, sources and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome, & N. G. Lederman (Eds.), Examining pedagogical content knowledge: The construct and its implications for science education (pp. 95–132). Dordrecht: Kluwer Academic Publishers.
  • Matthews, M. R. (2007). Models in science and in science education: An introduction. Science & Education, 16, 647-652.
  • Metin, D., & Leblebicioğlu, G. (2015). Ortaokul 6. ve 7. sınıf öğrencilerinin bilimsel model ve modelleme hakkındaki görüşlerinin bir yaz bilim kampı süresince gelişimi. Eğitim ve Bilim, 40(177), 1-18.
  • Miller, P. H. (2001). Developmental issues in model-based reasoning during childhood. Mind & Society, 2(2), 49-58.
  • Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130.
  • Park, S., & Oliver, J. S. (2008). Revisiting the conceptualisation of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38(3), 261-284.
  • Schwarz, C., & White, B. (2005). Metamodeling knowledge: Developing students' understanding of scientific modeling. Cognition and Instruction, 23(2), 165-205.
  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.
  • Silva, C. C. (2007). The role of models and analogies in the electromagnetic theory: A historical case study. Science & Education, 16(7), 835-848.
  • Şen, M., & Öztekin, C. (2019). Interaction among contextual knowledge and pedagogical content knowledge: sociocultural perspective. Education and Science, 44(198), 57-97.
  • Thiele, R. B., & Treagust, D. F. (1994a) The nature and extent of analogies in secondary chemistry textbooks. Instructional Science, 22, 61-74.
  • Thiele R. B., & Treagust, D. F. (1994b) An interpretive examination of high school chemistry teachers’ analogical explanations. Journal of Research in Science Teaching, 31(3), 227-242.
  • Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students' understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368.
  • Webb, G. I. (1993). Feature based modelling. In: Proceeding of 1993 WorldConference on Artificial Intelligence in Education. Edinburgh, Scotland, 497-504.
  • van Driel, J.H., De Jong, O., & Verloop, N. (2002). The development of preservice chemistry teachers’ PCK. Science Education, 86(4), 572-590.
  • van Driel, J. H & Verloop, N. (2002). Experienced teachers' knowledge of teaching and learning of models and modelling in science education, International Journal of Science Education, 24(12), 1255-1272.
  • Yıldırım, A., & Şimşek, H. (2005). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.
  • Yılmaz, R. Ü. (2018). Ortaokul düzeyinde Güneş, Dünya ve Ay modelinin geliştirilmesi, Yayımlanmamış Yüksek Lisans Tezi. Tokat Gaziosmanpaşa Üniversitesi, Tokat, Türkiye.
Karaelmas Eğitim Bilimleri Dergisi-Cover
  • ISSN: 2148-2888
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2013
  • Yayıncı: Zonguldak Bülent Ecevit Üniversitesi
Sayıdaki Diğer Makaleler

Öğretmenlerin Fen Öğretiminde Modeller ve Modelleme ile İlgili Pedagojik Alan Bilgileri

Erol ALTAY, Nilüfer DİDİŞ KÖRHASAN, Betül DEMİRDÖĞEN

Okul Öncesi Öğretmen Adaylarının Oyun Severlik Eğilimleri ile Mesleki Öz Yeterlik Algıları Arasındaki İlişkinin İncelenmesi

Fulya ÖZDEMİR, Cevat EKER

“Rafadan Tayfa” Çizgi Filminin Çocuk Edebiyatının Eğitsel İlkeleri Açısından İncelenmesi

Müjdat AYDOĞAN, Ayşe Özgül İNCE SAMUR

Fen Eğitimi Konu Alanında Yayınlanmış Makalelerin İçerik Analizi: Fen Bilimleri Öğretimi Dergisi Örneği

Ayberk BOSTAN SARIOĞLAN, Gamze DOLU, İlayda YILMAZ

Üniversite Birinci Sınıf Öğrencilerinin Üniversiteye Uyum Sürecinde Ana Baba Katılımına İlişkin Görüşlerinin İncelenmesi

Cumhur GÜNGÖR

Ziya Gökalp’in Türkçülüğün Esasları Adlı Eserinin Tarih Eğitimi Bağlamında Değerlendirilmesi

Osman Kubilay GÜL, Nagihan EVCİ

Öğretmenlerin Yansıtıcı Düşünme Eğilimleri, Demokratik Davranışları ve 21. Yüzyıl Öğreten Becerilerinin CHAID Analizi Yöntemi ile İncelenmesi

Ali ARSLAN, Tuba DEMİR

Cecily O’Neill’in Süreçsel Draması: Öğretmen ve Fonksiyonları

Ayhan YURDAGÜL

Ortaokul Müzik Dersi Uygulamalarındaki Okul Şarkıları Öğretiminde Bilgisayar Teknolojileri Kullanımına İlişkin Öğretmen Görüşleri

Ahmet KARATAŞ, Yasemin KARATAŞ

Covid-19 Pandemisi Sebebiyle Okulların Uzaktan Öğretim Yapması İle İlgili İnternet Forumlarında Paylaşılan Görüşler

Betül YAVUZ, Erdal TOPRAKCI