Geleneksel Yöntemlerle Yapılmış Peynirlerden Leuconostoc sp ve Pediococcus sp.’lerin İzolasyonu, Moleküler Tanımlanması ve Kısmi Karakterizasyonu

Laktik asit bakterileri heksoz şekerlerin laktik asite fermentasyon prosesinde önemli rol oynayan ticari bakterilerdir ve “güvenli mikroorganizmalar” olmaları nedeniyle süt endüstrisinde yaygın olarak kullanılırlar. Laktik asit bakterilerinin izolasyonu amacıyla 40 adet fermente gıda örneklenmiş ve bu örneklerden 160 bakteri izolatı saflaştırılarak tanımlanmıştır. Morfolojik karakterlerine göre 62 izolat (38.75%) cocci olarak sınıflandırılmış, bunların MRS agarda iyi yetişdiği ve tamamının katalaz-negatif olduğu belirlenmiştir. Coccobacilli ve bacilli formlar sırasıyla 66 (41.25%) ve 19 (11.875%) adet olarak gözlemlenmiş, 13 izolat ise morfolojik özelliklerine göre “diğerleri” şeklinde tanımlanmış ve deneme dışı bırakılmıştır. Pediococcus ve Leuconostoc suşlarının moleküler tanımlaması sırasıyla 23S ve 16S rDNA’larının PZR yardımıyla amplifiye edilmesiyle yapılmış ve 34 izolat Pediococcus olarak tanımlanırken 4 izolatın Leuconostoc suşu olduğu tespit edilmiştir. Yeni izole edilen bu suşların antimikrobiyal aktiviteleri test edilmiş ve birden fazla izolatın S. paratyphi ve E. faecali’ye karşı antimikrobiyal aktivitelerinin olduğu belirlenmiştir. Tüm test edilen izolatların P. mirabilis, E. coli ve C. jejuni’a karşı göreceli olarak düşük antimikrobiyal etki gösterirken P. aeruginosa’nın izolatların sentezlediği tüm bakteriyosinlere karşı dirençlilik gösterdiği belirlenmiştir. Sonuçlar test edilmiş izolatların (n=20) erythromycin, chloramphenicol ve rifampine karşı dirençlilik gösterdiğini ortaya koymuştur. Tüm izolatların plasmid içerikleri araştırılmış ve 10 izolatın en az 1 adet plasmid vektör içerdiği bulunmuştur.

Molecular Identification and Partial Characterization of Pediococcus sp. and Leuconostoc sp. Isolated from Traditionally Made Dairy Products

Lactic acid bacteria (LAB) are group of commercially important organisms that play an important role in the fermentation process of hexose sugars into lactic acid and they are videly used in dairy industrial applications since they were designated as “generally recognised as safe” organisms. In order to isolate laktic acid bacteria (LAB), forty fermented food samples were collected and 160 bacterial strains were purified and identified from those samples. According to morphological characteristics, 62 isolates (38.75%) were classified as cocci and all these cocci were found to be as catalase negative and grown well on MRS agar plates. Coccobacilli and bacilli forms were observed in 66 (41.25%) and 19 (11.875%) isolates respectively. Total of 13 isolates (8.125%) were classified as “others” (according to morphological characteristics) and excluded from rest of experimental process. For molecular identification of Leuconostoc sp. and Pediococcus sp., 16S and 23S rDNAs (respectively) were amplified with the aid of PCR and 34 of them were classified as Pediococcus whilst 4 of them were designated as Leuconostoc. These newly isolated strains were tested for their antimicrobial activity and more than one strains exhibited antimicrobial activity against to S. paratyphi and E. faecali. All tested strains showed relatively lower (≤ 10mm in diameter) antimicrobial effect against P. mirabilis, E. coli and C. jejuni while P. aeruginosa showed resistancy against all bacteriocins produced tested isolates. Result of this study revealed that majority of the tested (n=20) isolates were resistant to erythromycin, chloramphenicol and rifampin. All isolates were investigated for the presence of plasmid vectors and 10 of them found having at least 1 plasmid vector.

___

  • Akyol I, Serdaroglu K, Gezginc Y, Dayısoylu KS, Ekinci MS, Ozkose E 2009. Redirection of pyruvate pathway of lactic acid bacteria to improve cheese quality. Food Biotechnology 23: 200- 213.
  • Barry AL, Thornsberry C 1980. Susceptibility testing: diffusion procedures. (Manual of Clinical Microbiology USA: Ed Lennette EH, Balows A, Hausler WJ, Truant JP) 463–474.
  • Bredford TP, Fitzsimons NA, Brennan NL, Cogan TM 2001. Recent advances in cheese microbiology. International Dairy Journal, 11: 259-274.
  • Caridi A, Micari P, Caparra P, Cufari A, Sarullo V 2003. Ripening and seasonal changes in microbial groups and in physico-chemical properties of the ewe’s cheese Pecorino del Poro. International Dairy Journal, 13: 191-200.
  • Chassy BM, Gibson EM, Giuffrida A 1978. Evidence for plasmid-associated lactose metabolism in Lactobacillus casei subsp casei. Current Microbiology, 1:141-144.
  • Danielsen M, Simpson P J, O'Connor, EB, Ross RP, Stanton C 2007. Susceptibility of Pediococcus spp. to antimicrobial agents. Journal of Applied Microbiology, 102(2): 384-389.
  • Davies FL, Gasson MJ 1981. Reviews of the progress of dairy science: genetics of lactic acid bacteria. Journal of Dairy Research, 48:363-376.
  • de Vos WM, Underwood HM, Davies, FL 1984. Plasmid encoded bacteriophage resistance in Streptococcus cremoris SKl1. FEMS Microbiology Letters, 23:175-178.
  • Fox PF 1989. Proteolysis during cheese manufacture and ripening. Journal of Dairy Science, 72(6):1379-1400.
  • Garabal JI, Rodriguez-Alonso P, Centeno JA 2008. Characterization of lactic acid bacteria isolated from raw cows’ milk cheeses currently produced in Galicia. Food Science and Tecnology, 41:1452–1458.
  • Garvie EI 1986. Genus Leuconostoc. (Bergy’s Manual of Systematic Bacteriology, Ed. Sneath et al) 1071-1075.
  • Gezginc Y 2010. The Investigation of Potantial Usage in Food Industry in Terms of Plasmid Content And Biogenic Amin Production of Lactic Acid Bacteria Isolated from Traditional Yoghurts. KSÜ Fen Bil. Ens. Animal Science. PhD Thesis, pp 247.
  • Harrigan WF, McCance ME 1976. Laboratory Methods in Food and Dairy Microbiology, Academic Press, New York.
  • Haakensen M, Dobson M, Hill J, Ziola B 2009. Reclassification of Pediococcus dextrinicus (Coster and White 1964) Back 1978 (Approved Lists 1980) as Lactobacillus dextrinicus comb. nov., and emended description of the genus Lactobacillus. International Journal of Systematic Evolution Microbiology, 59: 615–621.
  • Hemme D, Foucaud-Scheunemann C 2004. Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. International Dairy Journal, 14:467–494.
  • Herreros M A, Fresno JM, Gonzalez Prieto MJ, Tornadijo ME 2003. Technological characterization of lactic acid bacteria isolated from Armada cheese (a Spanish goat’s milk cheese). International Dairy Journal, 13:469–479.
  • Herreros MA, Sandoval H, González L, Castro JM, Fresno JM, Tornadijo ME 2005. Antimicrobial activity and antibiotic resistance of lactic acid bacteria isolated from Armada cheese (a Spanish goats’ milk cheese). Food Microbiology, 22(5):455-459.
  • Holzapfel W, Schillinger U, Buckenhuskes H 2008. Sauerkraut (Handbook of Fermented Functional Foods: Ed. Farnworth ER) 395-412
  • Hummel AS, Hertel C, Holzapfel WH, Franz CM 2007. Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Applied and Environmental Microbiology, 73(3): 730-739.
  • Irmler S, Bavan T, Oberli A, Roetschi A, Badertscher R, Guggenbühl B, Berthoud H 2013. Catabolism of serine by Pediococcus acidilactici and Pediococcus pentosaceus. Applied and Environmental Microbiology, 79(4): 1309-1315.
  • Jang J, Kim B, Lee J, Han H 2003. A rapid method for identification of typical Leuconostoc species by 16S rDNA PCR-RFLP analysis. Journal of Microbiological Methods, 55(1): 295-302.
  • Kulwichit W, Nilgate S, Chatsuwan T, Krajiw S, Unhasuta C, Chongthaleong A 2007. Accuracies of Leuconostoc phenotypic identification: a comparison of API systems and conventional phenotypic assays. BMC Infectious Diseases, 7: 69-74.
  • Llorente-Bousquets A, Pérez-Munguía S, Farrés A 2008. Novel extracellular proteolytic activity in Pediococcus acidilactici ATCC 8042.Canadian Journal of Microbiology, 54(8):694-699.
  • McKay LL 1983. Functional properties of plasmids in lactic streptococci. Antonie van Leeuwenhoek, 49: 259-274.
  • Nghe D, Nguyen T. 2014. Characterization of antimicrobial activities of Pediococcus pentosaceus Vtcc-B-60. Journal of Applied Pharmaceutical Science, 4(5): 61-64.
  • Nieto-Arribas P, Sesena S, Poveda J M, Palop L, Cabezas L 2010. Genotypic and technological characterization of Leuconostoc isolates to be used as adjunct starters in Manchego cheese manufacture. Food Microbiology, 27: 85–93.
  • Noohi N, Ebrahimipour G, Rohani M, Talebi M, Pourshafie MR, 2016. Evaluation of potential probiotic characteristics and antibacterial effects of strains of Pediococcus species isolated from broiler chickens. Journal British Poultry Science, 57(3) 317-323.
  • Pal V, Jamuna M, Jeevaratnam K 2005. Isolation and characterization of bacteriocin producing lactic acid bacteria from a South Indian Special dosa (Appam) batter. Journal of Culture Collection 4: 53–60.
  • Pfannebecker J, Fröhlich J 2008. Use of a species-specific multiplex PCR for the identification of pediococci, International Journal of Food Microbiology, 128:288–296.
  • Rajagopal, SN Sandine WE 1990. Associative growth and proteolysis of Streptococcus thermophilus and Lactobacillus bulgaricus in skim milk. Journal of Dairy Science, 73: 894-899.
  • Randazzo, CL, Torriani S, Akkermans ADL, de Vos, WM, Vaughan, EE 2002. Diversity, dynamics and activity of bacterial communities during production of an artisanal Sicilian cheese as evaluated by 16S rRNA analysis. Applied and Environmental Microbiology 68: 1882–1892.
  • Reuter G 1985. Elective and selective media for lactic acid bacteria. International Journal of Food Microbiology, 2(1): 55-68.
  • Saad D, Strasser AM, Nadra D, Manca MC 1998. Exoprotease activity of Leuconostoc oenos in stress conditions. Journal of applied microbiology, 85(2):219-223.
  • Schillinger U, Holzapfel W, Kandler O 1989. Nucleic acid hybridization studies on Leuconostoc and heterofermentative lactobacilli and description of Leuconostoc amelibiosum sp. nov. Systematics Applied Microbiolofy 12:48-55.
  • Shareck J, Choi Y, Lee B, Miguez, CB 2004. Cloning vectors based on cryptic plasmids isolated from lactic acid bacteria: their characteristics and potential applications in biotechnology. Critical Reviews in Biotechnology, 24(4):155-208.
  • Tagg JR, McGiven AR 1971. Assay system for bacteriocins. Applied Microbiology. 21(5): 943.
  • Tagg JR, Dajani AS, Wannamaker LW 1976. Bacteriocins of gram–positive bacteria. Bacteriology Reviews 40: 722–756.
  • Teuber M, Geis A 1981. The family streptocaceae (non-medical aspect). In: Starr et al, The prokaryotes. A handbook on Habitats, Isolation and identification of Bacteria, vol. 2. Springer-Verlag, Berlin, 1614-1630.
  • Togo MA, Feresu SB, Mutukumira AN 2002. Identification of lactic acid bacteria isolated from Opaque beer (Chibuku) for potential use as a starter culture, Journbal of Food Technology 7(3):93-97.
  • Turgeon, N. and S. Moineau. 2001. Isolation and Characterization of a Streptococcus thermophilus Plasmid Closely Related to the pMV158 Family. Plasmid 45(3):171-183.
  • Zarazaga M, Sáenz Y, Portillo A, Tenorio C, Ruiz-Larrea F, Del Campo, R, Torres C. 1999. In vitro activities of ketolide HMR3647, macrolides, and other antibiotics against Lactobacillus, Leuconostoc, and Pediococcus isolates. Antimicrobial Agents and Chemotherapy, 43(12):3039-3041.