The Effects of Zinc Methionine Chelate and ZnSO4 on the Growth Performance and Immune Function of the Weaned Piglets and on IPEC-J2 Cell Immune Function

Zinc Methionine chelate (Met-Zn) shows a better palatability, stability, and bioactivity than traditional zinc preparations, therefore this study evaluated the effect on the growth performance and immunologic functions of the weaned piglets. Two in vivo tests were conducted: (I) crossbreeding piglets [duroc × (landrace × large white pigs)] were fed 80 mg/kg ZnSO4 or 20, 40, 60, or 80 mg/kg Met-Zn after the weaning on day 21.The content of serum globulin and lymphocyte transformation rate were measured on days 21, 35, 45 and 60; (II) another group of piglets weaned on day 28 days were fed 80 mg/kg ZnSO4 or 80 mg/kg Met-Zn after orally administrated of Escherichia coli. The levels of some immune factors in the small intestine were measured after the feeding for one month. An in vitro experiment studied the expression of some immune factors and zinc transporters in the porcine small intestinal epithelial cells (IPEC-J2) after treatments with ZnSO4+LPS and Met-Zn+LPS. Both Met-Zn and ZnSO4 increased the lymphocyte transformation rate and the content of serum globulin. But, Met-Zn showed better effect than ZnSO4 in improving the growth performance, particularly the average daily gain, after E. coli insults. With E. coli insults, Met-Zn promoted the expression of TNF-α and IL-6 in the anterior and middle segments of the small intestine respectively, but inhibited the expression of IL-8 in the middle segment. ZnSO4 promoted the expression of IL-6 in the posterior segment of the small intestine, but inhibited the expression of TNF-α in the middle segment. Both Met-Zn and ZnSO4 dose-dependently increased the expression levels of TNF-α, IL-6, and IL-8 in IPEC-J2 cells after the LPS stimulation. In summary, Met-Zn improved the growth performance of piglets and changed the immunologic functions.

Çinko Metionin Şalat ve ZnSO4’ın Sütten Kesilmiş Domuz Yavrularında Büyüme Performansı ve Bağışıklık İle IPEC-J2 Hücre İmmun Fonksiyonları Üzerine Etkileri

Çinko metionin şalatı geleneksel çinko preprasyonları ile karşılaştırıldığında daha lezzetli, stabil ve bioaktiftir. Bu çalışmada sütten kesilmiş domuz yavrularında çinko metionin şalatın büyüme performansı ve immunolojik fonksiyonlar üzerine etkisi çalışılmıştır. İki in vivo test uygulanmıştır: (I) Melez domuz yavruları [Duroc x (Landrace x Büyük Beyaz domuz)] 80 mg/kg ZnSO4, veya 20, 40, 60 ve 80 mg/kg Met-Zn ile 21 gün süresince sütten kesme sonrasında beslendi. Serum globülin miktarı ve lenfosit transformasyon oranı 21, 35, 45 ve 60. günlerde ölçüldü. (II) 28. Günde sütten kesilmiş olan ve ağız yoluyla Escherichia coli uygulanan domuz yavruları 80 mg/kg ZnSO4 veya 80 mg/kg Met-Zn ile beslendi. Bir aylık besleme sonrasında, ince barsaklarda bazı immun faktörlerin seviyeleri ölçüldü. ZnSO4+LPS ve Met-Zn+LPS uygulaması sonrasında domuz ince barsak epitel hücrelerinde (IPEC-J2) bazı immun faktörler ve çinko transporterlerinin ekspresyonu in vitro olarak araştırıldı. Hem Met-Zn hem de ZnSO4 lenfosit transformasyon oranı ve serum globülin miktarını artırdı. Met-Zn büyüme performansını iyileştirmede, özellikle de E. coli maruziyeti sonrasında ortalama günlük kilo kazanımınd ZnSO4’tan daha iyi etki gösterdi. E. coli maruziyetinde, Met-Zn ince barsakların anterior ve orta bölümde sırasıyla TNF-α ve IL-6 ekspresyonlarını uyarırken orta bölümde IL-8 ekspresyonunu inhibe etti. ZnSO4 ince barsakların posterior bölümünde IL-6 ekspresyonlarını uyarırken orta bölümünde TNF-α ekspresyonunu inhibe etti. Hem Met-Zn hem de ZnSO4 LPS stimulasyonu sonrasında IPEC-J2 hücrelerinde TNF-α, IL-6 ve IL-8 ekspresyon seviyelerinde doza bağlı artmeya neden oldu. Özet olarak, Met-Zn domuz yavrularında büyüme performansında iyileşmeye ve immunolojik fonksiyonlarda değişime neden oldu.

___

1. Nielsen FH: History of zinc in agriculture. Adv Nutr, 3 (6): 783-789, 2012. DOI: 10.3945/an.112.002881

2. Ciesinski L, Guenther S, Pieper R, Kalisch M, Bednorz C, Wieler LH: High dietary zinc feeding promotes persistence of multi-resistant E. coli in the swine gut. PLoS ONE, 13(1):e0191660, 2018. DOI: 10.1371/journal. pone.0191660

3. Karweina D, Kreuzer-Redmer S, Müller U, Franken T, Pieper R, Baron U, Olek S, Zentek J, Brockmann GA: The zinc concentration in the diet and the length of the feeding period affect the methylation status of the ZIP4 Zinc Transporter Gene in Piglets. PLoS ONE, 10(11):e0143098, 2015. DOI: 10.1371/journal.pone.0143098

4. Xia T, Lai W, Han M, Han M, Ma X, Zhang L: Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned piglets. Oncotarget, 8, 64878-64891, 2017. DOI: 10.18632/oncotarget.17612

5. Ou D, Li D, Cao Y, Li X, Yin J, Qiao S, Wu G: Dietary supplementation with zinc oxide decreases expression of the stem cell factor in the small intestine of weanling pigs. J Nutr Biochem, 18 (12): 820-826, 2007. DOI: 10.1016/j.jnutbio.2006.12.022

6. Broom LJ, Miller HM, Kerr KG, Knapp JS: Effects of zinc oxide and Enterococcus faecium SF68 dietary supplementation on the performance, intestinal microbiota and immune status of weaned piglets. Res Vet Sci, 80 (1): 45-54, 2006. DOI: 10.1016/j.rvsc.2005.04.004

7. Huang D, Zhuo Z, Fang S, Yue M, Feng J: Different zinc sources have diverse impacts on gene expression of zinc absorption related transporters in intestinal porcine epithelial cells. Biol Trace Elem Res, 173 (2): 325-332, 2016. DOI: 10.1007/s12011-016-0655-x

8. Case CL, Carlson MS: Effect of feeding organic and inorganic sources of additional zinc on growth performance and zinc balance in nursery pigs. J Anim Sci, 80, 1917-1924, 2002.

9. Martin RE, Mahan DC, Hill GM, Link JE, Jolliff JS: Effect of dietary organic microminerals on starter pig performance, tissue mineral concentrations, and liver and plasma enzyme activities. J Anim Sci, 89, 1042-1055, 2011. DOI: 10.2527/jas.2009-2384

10. Peters JC, Mahan DC, Wiseman TG, Fastinger ND: Effect of dietary organic and inorganic micromineral source and level on sow body, liver, colostrum, mature milk, and progeny mineral compositions over six parities. J Anim Sci, 88, 626-637, 2010. DOI: 10.2527/jas.2009-1782

11. Spears JW, Schoenheer WD: Efficacy of iron methionine as sources of iron for nursing pigs. J Anim Sci, 70 (1): 243, 1992.

12. Van Heugten E, Spears JW, Kegley EB, Ward JD, Qureshi MA: Effects of organic forms of zinc on growth performance, tissue zinc distribution, and immune response of weanling pigs. J Anim Sci, 81 (8): 2063-2071, 2003. DOI: 10.2527/2003.8182063x

13. Metzler-Zebeli BU, Lawlor PG, Magowan E, McCormack UM, Curião T, Hollmann M, Ertl R, Aschenbach JR, Zebeli Q: Finishing pigs that are divergent in feed efficiency show small differences in intestinal functionality and structure. PLoS ONE, 12(4):e0174917, 2017. DOI: 10.1371/journal.pone.0174917

14. NRC: Nutrient requirements of swine. Washington, DC: The National Academies Press, 2012.

15. Weichert H, Blechschmidt I, Schröder S, Ambrosius H: The MTTassay as a rapid test for cell proliferation and cell killing: Application to human peripheral blood lymphocytes (PBL). Allerg Immunol, 37 (3-4): 139- 144, 1991.

16. Lumeij JT, de Bruijne JJ, Kwant MM: Comparison of different methods of measuring protein and albumin in pigeon sera. Avian Pathol, 19 (2): 255-261, 1990. DOI: 10.1080/03079459008418678

17. James SJ, Swendseid M, Markinodan T: Microphage-mediated depression of T-cell proliferation in zinc-deficient mice. J Nutr, 117, 1982- 1988, 1987. DOI: 10.1093/jn/117.11.1982

18. DePasquale-Janlieu P, Fraker FJ: The role of corticterone in the loss in immune function in the zinc-deficient A/J mouse. J Nutr, 109 (11): 1847- 1855, 1979. DOI: 10.1093/jn/109.11.1847

19. Oropeza-Moe M, Grøntvedt CA, Phythian CJ, Sørum H, Fauske AK, Framstad T: Zinc oxide enriched peat influence Escherichia coli infection related diarrhea, growth rates, serum and tissue zinc levels in Norwegian piglets around weaning: Five case herd trials. Porcine Health Manag, 3:14, 2017. DOI: 10.1186/s40813-017-0060-7

20. Yu T, Zhu C, Chen S, Gao L, Lv H, Feng R, Zhu Q, Xu J, Chen Z, Jiang Z: Dietary high zinc oxide modulates the microbiome of ileum and colon in weaned piglets. Front Microbiol, 8:825, 2017. DOI: 10.3389/ fmicb.2017.00825

21. Chai W, Zakrzewski SS, Günzel D, Pieper R, Wang Z, Twardziok S, Janczyk P, Osterrieder N, Burwinkel M: High-dose dietary zinc oxide mitigates infection with transmissible gastroenteritis virus in piglets. BMC Vet Res, 10:75, 2014. DOI: 10.1186/1746-6148-10-75

22. Long L, Chen J, Zhang Y, Liang X, Ni H, Zhang B, Yin Y: Comparison of porous and nano zinc oxide for replacing high-dose dietary regular zinc oxide in weaning piglets. PLoS ONE, 12(8):e0182550, 2017. DOI: 10.1371/journal.pone.0188587

23. Huang YL, Lu L, Li SF, Luo XG, Liu B: Relative bioavailabilities of organic zinc sources with different chelation strengths for broilers fed a conventional corn-soybean meal diet. J Anim Sci, 87 (6): 2038-2046, 2009. DOI: 10.2527/jas.2008-1212

24. Pié S, Lallès JP, Blazy F, Laffitte J, Sève B, Oswald IP: Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J Nutr, 134 (3): 641-647, 2004. DOI: 10.1093/ jn/134.3.641

25. Yu Y, Wu A M, Zhang ZZ, Yan G, Zhang F, Zhang L, Shen X, Hu R, Zhang Y, Zhang K, Wang F: Characterization of the GufA subfamily member SLC39A11/Zip11 as a zinc transporter. J Nutr Biochem, 24 (10): 1697-1708, 2013. DOI: 10.1016/j.jnutbio.2013.02.010

26. Kukic I, Lee JK, Coblentz J, Kelleher SL, Kiselyov K: Zinc-dependent lysosomal enlargement in TRPML1-deficient cells involves MTF-1 transcription factor and ZnT4 (S1c30a4) transporter. Biochem J, 451 (2): 155-163, 2013. DOI: 10.1042/BJ20121506

27. Shi L, Zhang L, Li C, Hu X, Wang X, Huang Q, Zhou G: Dietary zinc deficiency impairs humoral and cellular immune responses to BCG and Esat-6/CFP-10 vaccinnation in offspring and adult rats. Tuberculosis, 97, 86-96, 2016. DOI: 10.1016/j.tube.2016.01.002

28. Overbeck S, Uciechowski P, Ackland ML, Ford D, Rink L: Intracellular zinc homeostasis in leukocyte subsets is regulated by different expression of zinc exports ZnT-1 to ZnT-9. J Leukoc Biol, 83 (2): 368-380, 2008. DOI: 10.1189/jlb.0307148

29. Scott ME, Koski KG: Zinc deficiency impairs immune responses against parasitic nematode infections at intestinal and systemic sites. J Nutr, 130 (5S Suppl): 1412S-1420S, 2000. DOI: 10.1093/jn/130.5.1412S

30. King LE, Frentzel JW, Mann JJ, Fraker PJ: Chronic zinc deficiency in mice disrupted T cell lymphopoiesis and erythropoiesis while B cell lymphopoiesis and mythropoiesis were maintained. J Am Coll Nutr, 24 (6): 494-502, 2005. DOI: 10.1080/07315724.2005.10719495

31. Cook-Mills JM, Fraker PJ: Function capacity of the residual lymphocytes from zinc-deficient adult mice. Br J Nutr, 69 (3): 835-848, 1993.

32. Perez-Becerril C, Morris AG, Mortimer A, McKenna PJ, de Belleroche J: Allelic variants in the zinc transporter-3 gene, SLC30A3, a candidate gene identified from gene expression studies, show genderspecific association with schizophrenia. Eur Psychiatry, 29 (3): 172-178, 2014. DOI: 10.1016/j.eurpsy.2013.05.007

33. Fujimoto S, Itsumura N, Tsuji T, Anan Y, Tsuji N, Ogra Y, Kimura T, Miyamae Y, Masuda S, Nagao M, Kambe T: Cooperative functions of ZnT1, metallothionein and ZnT4 in the cytoplasm are required for full activation of TNAP in the early secretory pathway. PLoS ONE, 8(10):e77445, 2013. DOI: 10.1371/journal.pone.0077445

34. Ryu M-S, Lichten LA, Liuzzi JP, Cousins RJ: Zinc transporters ZnT1 (Slc30a1), Zip8 (Slc39a8), and Zip10 (Slc39a10) in mouse red blood cells are differentially regulated during erythroid development and by dietary zinc deficiency. J Nutr, 138 (11): 2076-2083, 2008. DOI: 10.3945/ jn.108.093575

35. Gui B, Han X, Zhang Y, Liang J, Wang D, Xuan C, Yu Z, Shang Y: Dimerization of ZIP promotes its transcriptional repressive function and biological activity. Int J Biochem Cell Biol, 44 (6): 886-895, 2012. DOI: 10.1016/j.biocel.2012.02.012

36. Sargeant HR, Miller HM, Shaw MA: Inflammatory response of porcine epithelial IPEC J2 cells to enterotoxigenic E. coli infection is modulated by zinc supplementation. Mol Immunol, 48 (15-16): 2113- 2121, 2011. DOI: 10.1016/j.molimm.2011.07.002

37. Huang D, Hu Q, Fang S, Feng J: Dosage effect of zinc glycine chelate on zinc metabolism and gene expression of zinc transporter in intestinal segments on rat. Biol Trace Elem Res, 171 (2): 363-370, 2016. DOI: 10.1007/ s12011-015-0535-9

38. Cousins RJ, Liuzzi JP, Lichten LA: Mammalian zinc transport, trafficking and signals. J Biol Chem, 281 (34): 24085-24089, 2006. DOI: 10.1074/jbc.R600011200

39. Potocki S, Valensin D, Kozlowski H: The specificity of interaction of Zn2+, Ni2+ and Cu2+ ions with the histidine-rich domain of the TjZNT1 ZIP family transporter. Dalton Trans, 43 (26): 10215-10223, 2014. DOI: 10.1039/c4dt00903g

40. Chiellini C, Gori R, Tiezzi A, Brusetti L, Pucciarelli S, D’Amato E, Chiavola A, Sirini P, Lubello C, Petroni G: Ozonation effects for excess sludge reduction on bacterial communities composition in a full-scale activated sludge plant for domestic wastewater treatment. Environ Technol, 35 (12): 1462-1469, 2014. DOI: 10.1080/09593330.2013.870588
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

Effect of Multi-enzyme Produced By a Single Fungus on Growth Performance and Some Carcass Parameters of Broiler Chicks Fed on Maize-Soya Based Diets

Hasan rüştü KUTLU, Seyyed Naeim SABER, Harun KUTAY, Ladine ÇELİK, Yusuf UZUN, Nurten TOY, Metehan KUTLU, Özcan YÜCELT, Aykut BURĞUT, Pascal THIERY, Barış YAVUZ

Insect Bite Hypersensitivity (Sweet Itch) in a Non-Descript Riding Local Breed Mare

Tanveer AHMAD, Muhammad Saleem AKHTAR, Muhammad Mazhar AYAZ, Muhammad mudassar NAZIR, Ejaz AHMAD, Muhammad raza HAMEED, Maqbool HUSSAIN

Cezayir Bedevi Keçisi (Capra hircus)’nde Atretik Ovaryum Folikül Morfolojisi ve Aktif Kaspaz-3 İmmunolokalizasyonu

Nouria BOUKENAOUI-FERROUK, Farida KHAMMAR, Sara KASSOURI-MAOUCHE, Salima CHARALLAH, Asma CHAKHMA, Elara MOUDILOU, Zaina AMIRAT, Jean-Marie EXBRAYAT

Avustralya Merinosu ve Çin Merinosu Hibritlerinde Yün Miktarı İle Mikrosatellit Arasındaki İlişkinin Araştırılması

Min YANG, Jian MU, Yifan XIE, Manjun ZHAI, Zongsheng ZHAO

Beetal Keçisinde FecXG Polimorfizmi ve Filogenetik İlişkisinin İncelenmesi

Atia BASHEER, Mehwish SHAREEF, Mahjabeen ISLAM, Imran ZAHOOR

Evaluation of the Accelerator Effect of Coral and Platelet Rich Fibrin on Bone Healing

Ali Said DURMUŞ, Ali Osman ÇERİBAŞI, Havva Nur CAN

An Extraordinary Fetal Death: Inguinal Hernia in a Terrier Dog

Hasan ORAL, Mushap KURU, Semra KAYA, Murat Can DEMİR

Solunum Sistemi Hastalığı Olan Buzağılarda Saptanan Bovine Respiratory Syncytial Virusun Filogenetik Analizi

Nüvit COŞKUN, Feray ALKAN, İlke KARAYEL HACIOĞLU, Selda DURAN YELKEN, Seçil SEVİNÇ

In Vitro Antimicrobial Effect of Phenolic Extracts and Resistant Starch on Escherichia coli, Streptococcus spp., Bifidobacterium and Lactobacillus spp.

Samira KARAMATI JABEHDAR, Farzad MIRZAEI AGHJEHGHESHLAGH, Bahman NAVIDSHAD, Ali MAHDAVI, Hamid STAJI

The Effects of Zinc Methionine Chelate and ZnSO4 on the Growth Performance and Immune Function of the Weaned Piglets and on IPEC-J2 Cell Immune Function

Wen-Bin CHEN, Re-Jun FANG, Xin WU, Zi bin CHENG, Yun bo TIAN