PCA Destekli J48 Algoritması İle Manyetik Alanla Tedavi Edilen Diyabetik Sıçanların Biyokimyasal ve Biyomekanik Verilerinin Sınıflndırılması

Bu çalışmanın amacı, Wistar albino türü sıçanların diyabetik biyokimyasal değerleri ve Manyetik Alan Uygulamasıyla kasılma değerleriyle daha karmaşık hale getirilen veri setinin, istatistiksel algoritmalarından biri olan temel bileşen analiz -PCA ile etkili karar ağacı makinesi öğrenme algoritması-J48 aracılığı ortaya konulmasıdır. Wistar Albino türü sıçanlarkontrol grubu da dahil olmak üzere 4 farklı grup altında incelenmiştir. Sonuçlar incelendiğinde, PCA’nın karar ağacı makinesi öğrenme algoritması J48 ile birlikte kullanıldığında sınıflndırmadaki başarı oranı %96.25’den %97.50’e arttırdığı gözlenmiştir. Böylece, PCA ile desteklenen J48 algoritmasının, Wistar albino türü sıçanlarının daha karmaşık hale getirilmiş diyabetik metobolik değerlerinden elde edilen veriler üzerinde başarılı bir şekilde kullanılabileceğini ortaya koymuştur.

Classification of Biochemical and Biomechanical Data of Diabetic Rats Treated with Magnetic Field By PCA-Supported J48 Algorithm

The aim of this study was to investigate the J48 mediated decision tree algorithm from the principal component analysis - PCA, which ismore complex, one of the statistical algorithms of diabetic metabolic disorders of Wistar albino rats’ biochemical values and magnetic fieldapplication. Wistar Albino rats were examined under 4 diffrent groups including the control group. When the results were examined, it wasobserved that PCA increased the success rate of classification from 96.25% to 97.50% when used with J48 decision tree algorithm. Thus, thePCA-supported J48 algorithm demonstrated that Wistar albino rats could be successfully used on the data obtained from more complexdiabetic metabolic values.

___

  • 1. Expert Committee on the D, Classification of Diabetes M: Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care, 26 (Suppl. 1): S5-S20, 2003. DOI: 10.2337/ diacare.26.2007.s5
  • 2. Schneider H, Shaw J, Zimmet P: Guidelines for the detection of diabetes mellitus--diagnostic criteria and rationale for screening. Clin Biochem Rev, 24 (3): 77-80, 2003.
  • 3. Alberti KGMM, Zimmet PZ: Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med, 15 (7): 539-553, 1998. DOI: 10.1002/(SICI)1096 9136(199807)15:7<539::AIDDIA668>3.0.CO;2-S
  • 4. Emerging Risk Factors Colloboration, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, Stampfer M, Stehouwer CD, Lewington S, Pennells L, Thompson A, Sattar N, White IR, Ray KK, Danesh J: Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative metaanalysis of 102 prospective studies. Lancet, 375 (9733): 2215-2222, 2010. DOI: 10.1016/S0140-6736(10)60484-9
  • 5. Bourne RR, Stevens GA, White RA, Smith JL, Flaxman SR, Price H, Jonas JB, Keeff J, Leasher J, Naidoo K, Pesudovs K, Resnikof S, Taylor HR: Causes of vision loss worldwide, 1990-2010: A systematic analysis. Lancet Glob Health, 1 (6): E339-E349, 2013. DOI: 10.1016/S2214- 109X(13)70113-X
  • 6. Saran R, Li Y, Robinson B, Ayanian J, Balkrishnan R, Bragg-Gresham J, Chen JT, Cope E, Gipson D, He K, Herman W, Heung M, Hirth RA, Jacobsen SS, Kalantar-Zadeh K, Kovesdy CP, Leichtman AB, Lu Y, Molnar MZ, Morgenstern H, Nallamothu B, O’Hare AM, Pisoni R, Plattner B, Port FK, Rao P, Rhee CM, Schaubel DE, Selewski DT, Shahinian V, Sim JJ, Song P, Streja E, Kurella Tamura M, Tentori F, Eggers PW, Agodoa LY, Abbott KC: US renal data system 2014 annual data report: Epidemiology of kidney disease in the United States. Am J Kidney Dis, 66 (Suppl. 1): Svii, 2015. DOI: 10.1053/j.ajkd.2015.05.001
  • 7. Pelit A, Ozaykan B, Tuli A, Demirkazik A, Emre M, Gunay I: The effcts of magnetic field on the biomechanics parameters of soleus and extensor digitorum longus muscles in rats with streptozotocin-induced diabetes. Diabetes Technol Ther, 10 (4): 294-298, 2008. DOI: 10.1089/dia.2007.0280
  • 8. Keynes RD, Keynes RD, Aidley DJ: Nerve and Muscle. Cambridge University Press, 2001.
  • 9. Bulman A: Electromagnetic Fields (300 Hz to 300 GHz) Environmental Health Criteria, No: 137. Occupational Environ Med, 51 (10): 720-720, 1994. DOI: 10.1136/oem.51.10.720-a
  • 10. Bassett CAL: Beneficial effects of electromagnetic fields. J Cell Biochem, 51 (4): 387-393, 1993.
  • 11. McLeod KJ, Rubin CT: The effct of low-frequency electrical fields on osteogenesis. J Bone Joint Surg, 74 (6): 920-929, 1992.
  • 12. Sisken BF, Kanje M, Lundborg G, Herbst E, Kurtz W: Stimulation of rat sciatic nerve regeneration with pulsed electromagnetic fields. Brain Res, 485 (2): 309-316, 1989.
  • 13. Sisken BF, Walker J, Orgel M: Prospects on clinical applications of electrical stimulation for nerve regeneration. J Cell Biochem, 51 (4): 404- 409, 1993.
  • 14. Canedo-Dorantes L, Soenksen LR, Garcia-Sanchez C, Trejo-Nunez D, Perez-Chavez F, Guerrero A, Cardona-Vicario M, Garcia-Lara C, Colli-Magana D, Serrano-Luna G, Angeles Chimal JS, Cabrera G: Efficacy and safety evaluation of systemic extremely low frequency magnetic fields used in the healing of diabetic foot ulcers--phase II data. Arch Med Res, 46 (6): 470-478, 2015. DOI: 10.1016/j.arcmed.2015.07.002
  • 15. Del Seppia C, Ghione S, Luschi P, Ossenkopp KP, Choleris E, Kavaliers M: Pain perception and electromagnetic fields. Neurosci Biobehav Rev, 31 (4): 619-642, 2007. DOI: 10.1016/j.neubiorev.2007.01.003
  • 16. Markov MS: Magnetic field therapy: A review. Electromagn Biol Med, 26 (1): 1-23, 2007. DOI: 10.1080/15368370600925342
  • 17. Pilla AA: Mechanisms and therapeutic applications of time-varying and static magnetic filds. In, Barnes FS, Greenebaum B (Eds): Biological and Medical Aspects of Electromagnetic Fields. 3rd ed., Taylor and Francis, 2007.
  • 18. Gordon GA: Designed electromagnetic pulsed therapy: Clinical applications. J Cell Physiol, 212 (3): 579-582, 2007. DOI: 10.1002/jcp.21025
  • 19. Mert T, Gunay I, Ocal I: Neurobiological effcts of pulsed magnetic field on diabetes-induced neuropathy. Bioelectromagnetics, 31 (1): 39-47, 2010. DOI: 10.1002/bem.20524
  • 20. Worachartcheewan A, Schaduangrat N, Prachayasittikul V, Nantasenamat C: Data mining for the identification of metabolic syndrome status. EXCLI J, 17, 72-88, 2018. DOI: 10.17179/excli2017-911
  • 21. Zou Q, Qu K, Luo Y, Yin D, Ju Y, Tang H: Predicting diabetes mellitus with machine learning techniques. Front Genet, 9:515, 2018. DOI: 10.3389/ fgene.2018.00515
  • 22. Kaya IE, Pehlivanli AC, Sekizkardes EG, Ibrikci T: PCA based clustering for brain tumor segmentation of T1w MRI images. Comput Methods Programs Biomed, 140, 19-28, 2017. DOI:10.1016/j.cmpb.2016.11.011
  • 23. Magana-Mora A, Bajic VB: OmniGA: Optimized omnivariate decision trees for generalizable classification models. Sci Rep, 7:3898, 2017. DOI: 10.1038/s41598-017-04281-9
  • 24. Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Yu PS, Zhou Z-H, Steinbach M, Hand DJ, Steinberg D: Top 10 algorithms in data mining. Knowl Inf Syst, 14 (1): 1-37, 2008. DOI: 10.1007/s10115-007-0114-2
  • 25. Albright AL, Gregg EW: Preventing type 2 diabetes in communities across the U.S.: The National diabetes prevention program. Am J Prev Med, 44, S346-S351, 2013. DOI: 10.1016/j.amepre.2012.12.009
  • 26. Lee MS, Song KD, Yang HJ, Solis CD, Kim SH, Lee WK: Development of a type II diabetic mellitus animal model using Micropig (R). Lab Anim Res, 28 (3): 205-208, 2012. DOI: 10.5625/lar.2012.28.3.205
  • 27. Tay YC, Wang Y, Kairaitis L, Rangan GK, Zhang C, Harris DC: Can murine diabetic nephropathy be separated from superimposed acute renal failure? Kidney Int, 68 (1): 391-398, 2005. DOI: 10.1111/j.1523- 1755.2005.00405.x
  • 28. Sheweita SA, Mashaly S, Newairy AA, Abdou HM, Eweda SM: Changes in Oxidative stress and antioxidant enzyme activities in streptozotocininduced diabetes mellitus in rats: Role of Alhagi maurorum Extracts. Oxid Med Cell Longev, 2016:5264064, 2016. DOI: 10.1155/2016/5264064
  • 29. Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I: Machine Learning and data mining methods in diabetes research. Comput Struct Biotechnol J, 15, 104-116, 2017. DOI: 10.1016/j. csbj.2016.12.005
  • 30. Ludwig JA, Reynolds JA: Statistical Ecology: A Primer on Methods and Computing. Wiley, 1988.
  • 31. Paliy O, Shankar V: Application of multivariate statistical techniques in microbial ecology. Mol Ecol, 25 (5): 1032-1057, 2016. DOI: 10.1111/ mec.13536
  • 32. Wu H, Yang S, Huang Z, He J, Wang X: Type 2 diabetes mellitus prediction model based on data mining. IMU, 10, 100-107, 2018. DOI: 10.1016/j.imu.2017.12.006
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: 6
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

Derin Kızartılmış Ayçiçeği Yağının Bir Fare Modelinde Sperm Parametreleri Üzerindeki Etkileri: Probiyotiklerin Koruyucu Etkisi Var mı?

Zafer SABİT, Nurhayat GÜLMEZ, Serkan SAYINER, Murat GÜLMEZ

Study of Non-Specific Reactive Hepatitis in Stray Dogs

David FARRAY, Danilo SUAREZ, Alicia VELAZQUEZ-WALLRAF, Jose PEREZ, Antonio RAVELO-GARCÍA, Conrado CARRASCOSA, Myriam RODRIGUEZ-VENTURA, Jose Raduan JABER

Yetiştirme Kolonilerinde Ek Besleme Yapmanın Yumurta ve Farklı Yaştaki Larvalardan Yetiştirilen Ana Arıların (Apis mellifera L.) Üreme Özellikleri Üzerine Etkisi

Mahir Murat CENGİZ, Servet ARSLAN, Kemal YAZICI

The Effect of the Supplemental Feeding of Queen Rearing Colonies on the Reproductive Characteristics of Queen Bees (Apis mellifera L.) Reared from Egg and Diffrent old of Larvae

MAHİR MURAT CENGİZ, KEMAL YAZICI, Servet ARSLAN

Gökkuşağı Alabalığı (Oncorhynchus mykiss) Filetolarının Raf Ömrünü Uzatmak İçin Defne Esansiyel Yağı ve Vakum Paketlemenin Birlikte Kullanımı

Aksem AKSOY, Çiğdem Sezer

Kuzeybatı Çin’de Atık Koyun Fötuslarından Brucella suis S2 İzolasyonu

Zhen WANG, Jihai YI, Junbo ZHANG, Huan ZHANG, Chuangfu CHEN, Yuanzhi WANG, Benben WANG

Diagnosis of Multiple Congenital Cardiac Defects in a Newborn Calf

MERİÇ KOCATÜRK, Volkan YAZICIOĞLU, HAKAN SALCI, ERSOY BAYDAR, ZEKİ YILMAZ

Evaluation of the Feasibility, Reversibility and Cardiorespiratory Effcts of Epidural Dexmedetomidine in Sedated Dogs Undergoing Orchiectomy

Hadi IMANI RASTABI, Hadi NADDAF, Bahman MOSALLANEJAD, Ahmad KHAJEH

Effects of High Rice Diet on Growth Performance, Nutrients Apparent Digestibility, Nitrogen Metabolism, Blood Parameters and Rumen Fermentation in Growing Goats

Kaijun WANG, Mengli ZHENG, Ao REN, Chuanshe ZHOU, Qiongxian YAN, Zhiliang TAN, Peihua ZHANG, Kangle YI

Tavşanlarda Korneanın Subakut Alkali Yanıklarında Amniyotik Membran Transplantasyonu, Topikal Su Bazlı Propolis Ekstraktı, Kortikosteriod ve Antibiyotiğin Farklı Kombinasyonlarda Kullanımının Etkinliğinin Karşılaştırılması

Ali BELGE, Murat SARIERLER, Recai TUNCA, Zeynep BOZKAN, Rahime YAYGINGÜL, Emrah İPEK