Neutrophils: A Critical Participator in Common Diseases of Ruminants

Neutrophils, pivotal effector cells involved in innate immunity, play a central role in various infectious and inflammatory diseases. Using a powerful phagocytic killing mechanism, these cells protect the host by destroying the invading pathogens. However, these cells can also cause varying degrees of tissue damage if their activation is not finely controlled. In recent years, the involvement of neutrophils in human diseases has been extensively studied, while their roles in ruminant diseases have rarely been investigated. In the present review, we mainly summarize current knowledge regarding the characteristics and functions of neutrophils in ruminants such as goats and cattle. We emphasize the involvement of these cells in several common diseases such as mastitis, Brucellosis, Mycoplasma bovis infection and parasitic infections, among others. We also focus on discussing the relevant mechanisms and signaling pathways underlying these observations. In addition, we compare the phenotypes and functions of neutrophils of different ruminant species. The studies about ruminant neutrophils should help elucidate the pathogenesis of many ruminant diseases and ultimately shed light on the development of novel therapeutics for these diseases.

Nötrofiller: Ruminantların Yaygın Hastalıklarında Kritik Katılımcı

Doğal bağışıklıkla ilişkili önemli efektör hücreler olan nötrofiller, çeşitli bulaşıcı ve inflamatuvar hastalıklarda temel rol oynarlar. Bu hücreler güçlü bir fagositik öldürme mekanizması kullanarak istilacı patojenleri yok eder ve konağı korur. Bununla birlikte, aktivasyonları iyi kontrol edilmezse değişen derecelerde doku hasarına neden olabilirler. Son yıllarda, nötrofillerin insan hastalıkları ile ilişkisi kapsamlı bir şekilde incelenirken, ruminant hastalıklarındaki rolleri nadiren araştırılmıştır. Bu derlemede esas olarak keçi ve sığır gibi ruminantlarda nötrofillerin özellikleri ve fonksiyonları ile ilgili güncel bilgileri özetlenmiştir. Bu hücrelerin mastitis, Bruselloz, Mikoplazma bovis enfeksiyonu ve paraziter enfeksiyonlar gibi yaygın görülen çeşitli hastalıklardaki önemi vurgulanmıştır. Ayrıca, ilgili mekanizmalar tartışılmış ve bu gözlemlerin altında yatan yollara işaret edilmiştir. Ek olarak, farklı ruminant türlerin nötrofillerinin fenotipleri ve işlevleri karşılaştırılmıştır. Ruminant nötrofilleri ile ilgili çalışmalar, birçok ruminant hastalığının patogenezinin aydınlatılmasına yardımcı olmalı ve sonuç olarak bu hastalıklar için yeni terapötiklerin geliştirilmesine ışık tutmalıdır.

___

1. Soehnlein O: Neutrophil research, quo vadis? Trends Immunol, 40 (7): 561-564, 2019. DOI: 10.1016/j.it.2019.04.011

2. Ley K, Hoffman HM, Kubes P, Cassatella MA, Zychlinsky A, Hedrick CC, Catz SD: Neutrophils: New insights and open questions. Sci Immunol,

3 (30): eaat4579, 2018. DOI: 10.1126/sciimmunol.aat4579 3. Silvestre-Roig C, Hidalgo A, Soehnlein O: Neutrophil heterogeneity: Implications for homeostasis and pathogenesis. Blood, 127 (18): 2173- 2181, 2016. DOI: 10.1182/blood-2016-01-688887

4. Bryzek D, Ciaston I, Dobosz E, Gasiorek A, Makarska A, Sarna M, Eick S, Puklo M, Lech M, Potempa B, Potempa J, Koziel J: Triggering NETosis via protease-activated receptor (PAR)-2 signaling as a mechanism of hijacking neutrophils function for pathogen benefits. Plos Pathog, 15 (5):e1007773, 2019. DOI: 10.1371/journal.ppat.1007773

5. Ugur MR, Saber Abdelrahman A, Evans HC, Gilmore AA, Hitit M, Arifiantini RI, Purwantara B, Kaya A, Memili E: Advances in cryopreservation of bull sperm. Front Vet Sci, 6: 268, 2019. DOI: 10.3389/ fvets.2019.00268

6. de Macedo LO, Santos MAB, da Silva NMM, do Rego Barros GMM, Alves LC, Giannelli A, Ramos RAN, de Carvalho GA: Morphological and epidemiological data on Eimeria species infecting small ruminants in Brazil. Small Ruminant Res, 171, 37-41, 2019. DOI: 10.1016/j.smallrumres. 2018.12.006

7. Alhussien MN, Dang AK: Potential roles of neutrophils in maintaining the health and productivity of dairy cows during various physiological and physiopathological conditions: A review. Immunol Res, 67 (1): 21-38, 2019. DOI: 10.1007/s12026-019-9064-5

8. Malech HL, DeLeo FR, Quinn MT: The role of neutrophils in the immune system: An overview. Methods Mol Biol, 2087, 3-10, 2020. DOI: 10.1007/978-1-0716-0154-9_1

9. Xu X, Jin T: The Novel functions of the PLC/PKC/PKD signaling axis in g protein-coupled receptor-mediated chemotaxis of neutrophils. J Immunol Res, 2015: 817604, 2015. DOI: 10.1155/2015/817604

10. Xu X, Gera N, Li H, Yun M, Zhang L, Wang Y, Wang QJ, Jin T: GPCRmediated PLCbetagamma/PKCbeta/PKD signaling pathway regulates the cofilin phosphatase slingshot 2 in neutrophil chemotaxis. Mol Biol Cell, 26 (5): 874-886, 2015. DOI: 10.1091/mbc.E14-05-0982

11. Faurschou M, Borregaard N: Neutrophil granules and secretory vesicles in inflammation. Microbes Infect, 5 (14): 1317-1327, 2003.

12. Tedde V, Bronzo V, Puggioni GMG, Pollera C, Casula A, Curone G, Moroni P, Uzzau S, Addis MF: Milk cathelicidin and somatic cell counts in dairy goats along the course of lactation. J Dairy Res, 86 (2): 217-221, 2019. DOI: 10.1017/S0022029919000335

13. Tian SZ, Chang CJ, Chiang CC, Peh HC, Huang MC, Lee JW, Zhao X: Comparison of morphology, viability, and function between blood and milk neutrophils from peak lactating goats. Can J Vet Res, 69, 39-45, 2005.

14. Paape MJ, Tucker HA, Hafs HD: Comparison of methods for estimating milk somatic cells. J Dairy Sci, 48, 191-196, 1965.

15. Alhussien MN, Dang AK: Milk somatic cells, factors influencing their release, future prospects, and practical utility in dairy animals: An overview. Vet World, 11 (5): 562-577, 2018. DOI: 10.14202/vetworld.2018.562-577

16. Norstebo H, Dalen G, Rachah A, Heringstad B, Whist AC, Nodtvedt A, Reksen O: Factors associated with milking-to-milking variability in somatic cell counts from healthy cows in an automatic milking system. Prev Vet Med, 172:104786, 2019. DOI: 10.1016/j.prevetmed.2019.104786

17. Shah A, Darzi M, Kamil S, Mir M, Maqbool R, Ali R, Kashani B, Wani H, Bashir A, Dar D, Qureshi S: Somatic cell alteration in healthy and mastitic milk of sheep and goats. J Entomol Zool Stud, 5 (6): 27-33, 2017.

18. Aziz M, Matsuda A, Yang WL, Jacob A, Wang P: Milk fat globuleepidermal growth factor-factor 8 attenuates neutrophil infiltration in acute lung injury via modulation of CXCR2. J Immunol, 189 (1): 393-402, 2012. DOI: 10.4049/jimmunol.1200262

19. Bassel LL, Caswell JL: Bovine neutrophils in health and disease. Cell Tissue Res, 371 (3): 617-637, 2018. DOI: 10.1007/s00441-018-2789-y

20. Paape MJ, Bannerman DD, Zhao X, Lee JW: The bovine neutrophil: Structure and function in blood and milk. Vet Res, 34 (5): 597-627, 2003. DOI: 10.1051/vetres:2003024

21. Roosen S, Exner K, Paul S, Schroder JM, Kalm E, Looft C: Bovine beta-defensins: Identification and characterization of novel bovine betadefensin genes and their expression in mammary gland tissue. Mamm Genome, 15, 834-842, 2004. DOI: 10.1007/s00335-004-2387-z

22. Garcia M, Elsasser TH, Biswas D, Moyes KM: The effect of citrusderived oil on bovine blood neutrophil function and gene expression in vitro. J Dairy Sci, 98 (2): 918-926, 2015. DOI: 10.3168/jds.2014-8450

23. Carretta MD, Hidalgo AI, Burgos J, Opazo L, Castro L, Hidalgo MA, Figueroa CD, Taubert A, Hermosilla C, Burgos RA: Butyric acid stimulates bovine neutrophil functions and potentiates the effect of platelet activating factor. Vet Immunol Immunopathol, 176, 18-27, 2016. DOI: 10.1016/j.vetimm.2016.05.002

24. Zebeli Q, Metzler-Zebeli BU: Interplay between rumen digestive disorders and diet-induced inflammation in dairy cattle. Res Vet Sci, 93 (3): 1099-1108, 2012. DOI: 10.1016/j.rvsc.2012.02.004

25. Heikkila AM, Liski E, Pyorala S, Taponen S: Pathogen-specific production losses in bovine mastitis. J Dairy Sci, 101 (10): 9493-9504, 2018. DOI: 10.3168/jds.2018-14824

26. Katsafadou AI, Politis AP, Mavrogianni VS, Barbagianni MS, Vasileiou NGC, Fthenakis GC, Fragkou IA: Mammary defences and immunity against mastitis in sheep. Animals, 9 (10):726, 2019. DOI: 10.3390/ani9100726

27. Alhussien M, Kaur M, Manjari P, Kimothi SP, Mohanty AK, Dang AK: A comparative study on the blood and milk cell counts of healthy, subclinical, and clinical mastitis Karan Fries cows. Vet World, 8 (5): 685-689, 2015. DOI: 10.14202/vetworld.2015.685-689

28. Hu X, He Z, Jiang P, Wang K, Guo J, Zhao C, Cao Y, Zhang N, Fu Y: Neutralization of interleukin-17A attenuates lipopolysaccharideinduced mastitis by inhibiting neutrophil infiltration and the inflammatory response. J Interferon Cytokine Res, 39 (9): 577-584, 2019. DOI: 10.1089/ jir.2019.0069

29. Mehrzad J, Duchateau L, Burvenich C: Viability of milk neutrophils and severity of bovine coliform mastitis. J Dairy Sci, 87 (12): 4150-4162, 2004. DOI: 10.3168/jds.S0022-0302(04)73558-4

30. Swain DK, Kushwah MS, Kaur M, Patbandha TK, Mohanty AK, Dang AK: Formation of NET, phagocytic activity, surface architecture, apoptosis and expression of toll like receptors 2 and 4 (TLR2 and TLR4) in neutrophils of mastitic cows. Vet Res Commun, 38, 209-219, 2014. DOI: 10.1007/s11259-014-9606-1

31. Alhussien M, Manjari P, Sheikh AA, Mohammed Seman S, Reddi S, Mohanty AK, Mukherjee J, Dang AK: Immunological attributes of blood and milk neutrophils isolated from crossbred cows during different physiological conditions. Czech J Anim Sci, 61 (5): 223-231, 2016. DOI: 10.17221/63/2015-cjas

32. Ellis TN, Beaman BL: Interferon-gamma activation of polymorphonuclear neutrophil function. Immunology, 112, 2-12, 2004. DOI: 10.1111/ j.1365-2567.2004.01849.x

33. Vandenesch F, Lina G, Henry T: Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: A redundant arsenal of membrane-damaging virulence factors? Front Cell Infect Microbiol, 2:12, 2012. DOI: 10.3389/fcimb.2012.00012

34. Foster TJ: Immune evasion by Staphylococci. Nat Rev Microbiol, 3, 948-958, 2005. DOI: 10.1038/nrmicro1289

35. van Kessel KP, Bestebroer J, van Strijp JA: Neutrophil-mediated phagocytosis of Staphylococcus aureus. Front Immunol, 5:467, 2014. DOI: 10.3389/fimmu.2014.00467

36. Stevens MG, De Spiegeleer B, Peelman L, Boulougouris XJ, Capuco AV, Burvenich C: Compromised neutrophil function and bovine E. coli mastitis: Is C5a the missing link? Vet Immunol Immunopathol, 149 (3-4): 151-156, 2012. DOI: 10.1016/j.vetimm.2012.07.002

37. Wei LJ, Tan X, Fan GJ, Jiang YN, Shah QA: Role of the NOD1/ NF-kappaB pathway on bovine neutrophil responses to crude lipopolysaccharide. Vet J, 214, 24-31, 2016. DOI: 10.1016/j.tvjl.2016.02.006

38. Charypkhan D, Sultanov AA, Ivanov NP, Baramova SA, Taitubayev MK, Torgerson PR: Economic and health burden of brucellosis in Kazakhstan. Zoonoses Public Health, 66 (5): 487-494, 2019. DOI: 10.1111/zph.12582

39. Keleher LL, Skyberg JA: Activation of bovine neutrophils by Brucella spp. Vet Immunol Immunopathol, 177, 1-6, 2016. DOI: 10.1016/j. vetimm.2016.05.011

40. Degos C, Gagnaire A, Banchereau R, Moriyon I, Gorvel JP: Brucella CβG induces a dual pro- and anti-inflammatory response leading to a transient neutrophil recruitment. Virulence, 6 (1): 19-28, 2015. DOI: 10.4161/21505594.2014.979692

41. Bashir KMI, Choi JS: Clinical and physiological perspectives of betaglucans: The past, present, and future. Int J Mol Sci, 18 (9): 1906, 2017. DOI: 10.3390/ijms18091906

42. Burki S, Frey J, Pilo P: Virulence, persistence and dissemination of Mycoplasma bovis. Vet Microbiol, 179 (1-2): 15-22, 2015. DOI: 10.1016/j. vetmic.2015.02.024

43. Gondaira S, Higuchi H, Nishi K, Iwano H, Nagahata H: Mycoplasma bovis escapes bovine neutrophil extracellular traps. Vet Microbiol, 199, 68- 73, 2017. DOI: 10.1016/j.vetmic.2016.12.022

44. Jimbo S, Suleman M, Maina T, Prysliak T, Mulongo M, Perez- Casal J: Effect of Mycoplasma bovis on bovine neutrophils. Vet Immunol Immunopathol, 188, 27-33, 2017. DOI: 10.1016/j.vetimm.2017.04.011

45. Cacciotto C, Cubeddu T, Addis MF, Anfossi AG, Tedde V, Tore G, Carta T, Rocca S, Chessa B, Pittau M, Alberti A: Mycoplasma lipoproteins are major determinants of neutrophil extracellular trap formation. Cell Microbiol, 18 (12): 1751-1762, 2016. DOI: 10.1111/cmi.12613

46. Thammavongsa V, Missiakas DM, Schneewind O: Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science, 342 (6160): 863-866, 2013. DOI: 10.1126/science.1242255

47. Carlsen ED, Liang Y, Shelite TR, Walker DH, Melby PC, Soong L: Permissive and protective roles for neutrophils in leishmaniasis. Clin Exp Immunol, 182 (2): 109-118, 2015. DOI: 10.1111/cei.12674

48. Silva LM, Caro TM, Gerstberger R, Vila-Vicosa MJ, Cortes HC, Hermosilla C, Taubert A: The apicomplexan parasite Eimeria arloingi induces caprine neutrophil extracellular traps. Parasitol Res, 113, 2797- 2807, 2014. DOI: 10.1007/s00436-014-3939-0

49. Munoz-Caro T, Lendner M, Daugschies A, Hermosilla C, Taubert A: NADPH oxidase, MPO, NE, ERK1/2, p38 MAPK and Ca2+ influx are essential for Cryptosporidium parvum-induced NET formation. Dev Comp Immunol, 52 (2): 245-254, 2015. DOI: 10.1016/j.dci.2015.05.007

50. Caswell JL: Failure of respiratory defenses in the pathogenesis of bacterial pneumonia of cattle. Vet Pathol, 51 (2): 393-409, 2014. DOI: 10.1177/0300985813502821
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

Yerli Türk Kazlarında (Anser anser) Esansiyel Yağ Karışımının Büyüme Performansı ve Bağırsak Histolojisi Üzerine Etkisi

Tarkan ŞAHİN, Turgut KIRMIZIBAYRAK, Mükremin ÖLMEZ, Özlem KARADAĞOĞLU, Ebru KARADAĞ SARI, Serpil ADIGÜZEL IŞIK, Mehmet Akif YÖRÜK

Differentiation of Staphylococcus pseudintermedius in the Staphylococcus intermedius Group (SIG) by Conventional and Molecular Methods

Nikolina RUSENOVA, Svetozar KRUSTEV, Anatoli ATANASOV, Anton RUSENOV, Spaska STANILOVA

Listeria monocytogenes’in Patojenitesinde Histidin Kinaz Geni yycG’nin Rolü

Chun FANG, Xiaowei FANG, Yu ZHANG, Chen WANG, Xiongyan LIANG, Yufang GU, Yuying YANG, Wei HU, Qingping LUO, Hui WU

Meta Analysis of Allele and Genotype Frequency of Growth Hormone (bGH) Gene AluI Polymorphism, Which is Effective on Milk Yield in Holstein Cattle

Aytaç AKÇAY, Fadime DALDABAN, Elif ÇELİK, Korhan ARSLAN, Bilal AKYÜZ

Development of a SYBR Green Real-Time PCR Assay with Melting Curve Analysis for Simultaneous Detection of Actinobacillus pleuropneumoniae and Haemophilus parasuis

Bin HU, Shouping ZHANG, Yanhua XU, Zhichen WANG, Qiuxuan REN, Jingfei XU, Yongjun DONG, Lirong WANG

Sıçan Karaciğer Hücrelerinde Isı Şok Protein 70 (HSP70)’in Adenovirüs Aracılı Aşırı Ekspresyonunun Oksidatif Strese Karşı Koruyucu Etkileri

Hong JI, Jingru GUO, Huijie HU, Hongrui LIU, Jianbin YUAN

Neutrophils: A Critical Participator in Common Diseases of Ruminants

Si-Lu NI, Fei GAO, Chen-Xiang ZUO, Xi-Dian TANG, Ming-Jie LIU, Jian-Jun CHANG, Yong WANG, De-Kun CHEN, Wen-Tao MA

Morphological and Genetic Characteristics of Zerdava, A Native Turkish Dog Breed

Fatma Tülin ÖZBAŞER, Fatih ATASOY, Metin ERDOĞAN, Banu YÜCEER ÖZKUL, Bora ÖZARSLAN

Sibirya Orman Ürünleri ve Alfa-Amilaz Enzimi Bileşenlerini Kullanarak İneklerde Süt Veriminin Sürdürülebilir Artışı

Evgeny IVANOV, Olga IVANOVA, Vera TERESHCHENKO, Lyubov EFIMOVA

Actinobacillus pleuropneumoniae ve Haemophilus parasuis’in Eşzamanlı Saptanması Amacıyla Erime Eğrisi Analizi İle SYBR Green Real-Time PCR Testinin Geliştirilmesi

Shouping ZHANG, Bin HU, Yanhua XU, Zhichen WANG, Qiuxuan REN, Jingfei XU, Yongjun DONG, Lirong WANG