MiR-665’nin HPGDS Hedefli Luteal Fonksiyon DüzenlemeMekanizması

MiRNA-665/hedef gen çiftinin etkileşimi hakkında az sayıdaki rapor göz önüne alındığında, hematopoietik prostaglandin D sentaz (HPGDS) geninin 3’-kodlanmayan bölgesi (3’-UTR) için bir çift lusiferaz raportör gen vektörünün oluşturulması ve HPGDS’nin miR-665 regülasyonunun moleküler mekanizmasının aydınlatılması amaçlandı. HPGDS geninin 3’-UTR bölgesini hedefleyen miR-665’nin saptanması için biyoinformatik yazılım kullanıldı. Sentetik psiCHECK-HPGDS-w/m-3’-UTR’nin güvenilirliği, dual lusiferaz sindirim yöntemi ile belirlendi. Daha sonra miR-665 mimik/negatif kontrolün, koyun luteal hücreleri ile ayrı ayrı ko-transfeksiyonu yapıldı ve ardından lusiferaz aktivitesi ve HPGDS ekspresyonu tespit edildi. Sonuçlar, HPGDS için 3’-UTR yabanıl tip (psiCHECK2-HPGDS-w-3’UTR) ve mutant (psiCHECK2-HPGDS-m-3’UTR) ekspresyon vektörlerinin başarıyla oluşturulduğunu ve dual lusiferaz raportör gen analizi, relatif lusiferaz aktivite ekspresyonunun, blank/negatif kontrol grubuna kıyasla %52’lik bir düşüşle w-3’-UTR grubunda inhibe edildiğini ve farkın istatistiksel olarak anlamlı olduğunu gösterdi (P

Mechanism of miR-665 Regulating Luteal Function Via Targeting HPGDS

Given few reports on the interaction of miRNA-665/target gene pair, we aimed to construct a dual luciferase reporter gene vector for 3’-untranslated region (3’-UTR) of the haematopoietic prostaglandin D synthase (HPGDS) gene and elucidate the underlying molecular mechanism of miR-665 regulation of HPGDS. Bioinformatics software was used to predict miR-665 targeting of 3’-UTR region of HPGDS gene. The reliability of the synthetic psiCHECK-HPGDS-w/m-3’-UTR was determined using double luciferase digestion method. Then, miR-665 mimic/negative control was separately co-transfected with sheep luteal cells, and then, luciferase activity and HPGDS expression were detected. Results showed that 3’-UTR wild-type (psiCHECK2-HPGDS-w-3’UTR) and mutant (psiCHECK2-HPGDS-m-3’UTR) expression vectors for HPGDS were successfully constructed, and dual luciferase reporter gene assay showed that the expression of relative luciferase activity was inhibited in the w-3’-UTR group, with 52% decrease compared to the blank/negative control group, and the difference was statistically significant (P

___

  • 1. Asada K, Shimamoto S, Oonoki T, Maruno T, Kobayashi Y, Aritake K, Urade Y, Hidaka Y: Molecular recognition mechanism of hematopoietic prostaglandin D synthase with its cofactor and substrate. Biophys J, 112 (3): 494a, 2017. DOI: 10.1016/j.bpj.2016.11.2675
  • 2. Kanaoka Y, Ago H, Inagaki E, Nanayama T, Miyano M, Kikuno R, Fujii Y, Eguchi N, Toh H, Urade Y, Hayaishi O: Cloning and crystal structure of hematopoietic prostaglandin D synthase. Cell, 90 (6): 1085-1095, 1997. DOI: 10.1016/S0092-8674(02)09631-9
  • 3. Yamamoto K, Tsubota T, Uno T, Tsujita Y, Yokota S, Sezutsu H, Mita K: A defective prostaglandin E synthase could affect egg formation in the silkworm Bombyx mori. Biochem Biophys Res Commun, 521 (2): 347-352, 2020. DOI: 10.1016/j.bbrc.2019.10.121
  • 4. Dozier BL, Watanabe K, Duffy DM: Two pathways for prostaglandin F2α synthesis by the primate periovulatory follicle. Reproduction, 136 (1): 53-63, 2008. DOI: 10.1530/REP-07-0514
  • 5. Arima M, Fukuda T: Prostaglandin D2 and TH2 inflammation in the pathogenesis of bronchial asthma. Korean J Intern Med, 26 (1): 8-18, 2011. DOI: 10.3904/kjim.2011.26.1.8
  • 6. Xue L, Salimi M, Panse I, Mjösberg JM, McKenzie ANJ, Spits H, Klenerman P, Ogg G: Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J Allergy Clin Immunol, 133 (4): 1184-1194, 2014. DOI: 10.1016/j.jaci.2013.10.056
  • 7. Borel V, Gallot D, Marceau G, Sapin V, Blanchon L: Placental implications of peroxisome proliferator-activated receptors in gestation and parturition. PPAR Res, 2008:758562, 2008. DOI: 10.1155/2008/758562
  • 8. Farhat A, Philibert P, Sultan C, Poulat F, Boizet-Bonhoure B: Hematopoietic-prostaglandin D2 synthase through PGD2 production is involved in the adult ovarian physiology. J Ovarian Res, 4:3, 2011. DOI: 10.1186/1757-2215-4-3
  • 9. Qi R, Han X, Wang J, Qiu X, Wang Q, Yang F: MicroRNA-489- 3p promotes adipogenesis by targeting the Postn gene in 3T3-L1 preadipocytes. Life Sci, 278:119620, 2021. DOI: 10.1016/J.LFS.2021.119620
  • 10. Lytle JR, Yario TA, Steitz JA: Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5’UTR as in the 3’UTR. PNAS, 104 (23): 9667-9672, 2007. DOI: 10.1073/pnas.0703820104
  • 11. Liu X, Duan H, Zhang HH, Gan L, Xu Q: Integrated data set of microRNAs and mRNAs involved in severe intrauterine adhesion. Reprod Sci, 23 (10): 1340-1307, 2016. DOI: 10.1177/1933719116638177
  • 12. Baddela VS, Onteru SK, Singh D: A syntenic locus on buffalo chromosome 20: Novel genomic hotspot for miRNAs involved in follicularluteal transition. Funct Integr Genomics, 17 (2-3): 321-334, 2017. DOI: 10.1007/s10142-016-0535-7
  • 13. Bernardo BC, Charchar FJ, Lin RC, McMullen JR: A microRNA guide for clinicians and basic scientists: Background and experimental techniques. Heart Lung Circ, 21 (3): 131-142, 2012. DOI: 10.1016/j. hlc.2011.11.002
  • 14. Younger ST, Corey DR: Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters. Nucleic Acids Res, 39 (13): 5682-5691, 2011. DOI: 10.1093/nar/gkr155
  • 15. Ling X, Li F: Silencing of antiapoptotic survivin gene by multiple approaches of RNA interference technology. Biotechniques, 36 (3): 450- 460, 2004. DOI: 10.2144/04363RR01
  • 16. Du G, Yonekubo J, Zeng Y, Osisami M, Frohman MA: Design of expression vectors for RNA interference based on miRNAs and RNA splicing. FEBS J, 273 (23): 5421-5427, 2006. DOI: 10.1111/j.1742-4658. 2006.05534.x
  • 17. Fuchs A, Riegler S, Ayatollahi Z, Cavallari N, Giono LE, Nimeth BA, Mutanwad KV, Schweighofer A, Lucyshyn D, Barta A, Petrillo E, Kalyna M: Targeting alternative splicing by RNAi: From the differential impact on splice variants to triggering artificial pre-mRNA splicing. Nucleic Acids Res, 49 (2): 1133-1151, 2021. DOI: 10.1093/NAR/GKAA1260
  • 18. Bhaumik S, Lewis XZ, Gambhir S: Optical imaging of Renilla luciferase, synthetic Renilla luciferase, and firefly luciferase reporter gene expression in living mice. J Biomed Opt, 9 (3): 578-586, 2004. DOI: 10.1117/ 1.1647546
  • 19. Shifera AS, Hardin JA: Factors modulating expression of Renilla luciferase from control plasmids used in luciferase reporter gene assays. Anal Biochem, 396 (2): 167-172, 2010. DOI: 10.1016/j.ab.2009.09.043
  • 20. Li M, Zhang S, Qiu Y, He Y, Chen B, Mao R, Cui Y, Zeng Z, Chen M: Upregulation of miR-665 promotes apoptosis and colitis in inflammatory bowel disease by repressing the endoplasmic reticulum stress components XBP1 and ORMDL3. Cell Death Dis, 8 (3):e2699, 2017. DOI: 10.1038/ cddis.2017.76
  • 21. Moein S, Vagharitabari M, Qujeq D, Majidinia M, Nabavi SM, Yousefi B: MiRNAs and inflammatory bowel disease: An interesting new story. J Cell Physiol, 234 (4): 3277-3293, 2019. DOI: 10.1002/jcp.27173
  • 22. Engelsvold DH, Utheim TP, Olstad OK, Gonzalez P, Eidet JR, Lyberg T, Trøseid AMS, Dartt DA, Raeder S: MiRNA and mRNA expression profiling identifies members of the miR-200 family as potential regulators of epithelial-mesenchymal transition in pterygium. Exp Eye Res, 115, 189- 198, 2013. DOI: 10.1016/j.exer.2013.07.003
  • 23. Hu J, Ni G, Mao L, Xue X, Zhang J, Wu W, Zhang S, Zhao H, Ding L, Wang L: LINC00565 promotes proliferation and inhibits apoptosis of gastric cancer by targeting miR-665/AKT3 axis. Onco Targets Ther, 12, 7865-7875, 2019. DOI: 10.2147/OTT.S189471
  • 24. Yu J, Yang W, Wang W, Wang Z, Pu Y, Chen H, Wang F, Qian J: Involvement of miR-665 in protection effect of dexmedetomidine against oxidative stress injury in myocardial cells via CB2 and CK1. Biomed Pharmacother, 115:108894, 2019. DOI: 10.1016/j.biopha.2019.108894
  • 25. Kanaoka Y, Urade Y: Hematopoietic prostaglandin D synthase. Prostaglandins Leukot Essent Fatty Acids, 69, 163-167, 2003. DOI: 10.1016/ S0952-3278(03)00077-2
  • 26. Mohri I, Eguchi N, Suzuki K, Urade Y, Taniike M: Hematopoietic prostaglandin D synthase is expressed in microglia in the developing postnatal mouse brain. Glia, 42 (3): 263-274, 2003. DOI: 10.1002/glia.10183
  • 27. Fujitani Y, Kanaoka Y, Aritake K, Uodome N, Okazaki-Hatake K, Urade Y: Pronounced eosinophilic lung inflammation and Th2 cytokine release in human lipocalin-type prostaglandin D synthase transgenic mice. J Immunol, 168 (1): 443-449, 2002. DOI: 10.4049/jimmunol.168.1.443
  • 28. Lee J, Kim HS: The role of autophagy in eosinophilic airway inflammation. Immune Netw, 19 (1):e5, 2019. DOI: 10.4110/in.2019.19.e5
  • 29. Brightling CE, Brusselle G, Altman P: The impact of the prostaglandin D2 receptor 2 and its downstream effects on the pathophysiology of asthma. Allergy, 75 (4): 761-768, 2020. DOI: 10.1111/all.14001
  • 30. Rajakariar R, Hilliard M, Lawrence T, Trivedi S, Colville-Nash P, Bellingan G, Fitzgerald D, Yaqoob MM, Gilroy DW: Hematopoietic prostaglandin D2 synthase controls the onset and resolution of acute inflammation through PGD2 and 15-deoxyΔ12-14 PGJ2. PNAS, 104 (52): 20979-20984, 2007. DOI: 10.1073/pnas.0707394104
  • 31. Saito S, Tsuda H, Michimata T: Prostaglandin D2 and reproduction. Am J Reprod Immunol, 47 (5): 295-302, 2002. DOI: 10.1034/j.1600-0897. 2002.01113.x
  • 32. Zelinski-Wooten MB, Stouffer RL: Intraluteal infusions of prostaglandins of the E, D, I, and A series prevent PGF2α-induced, but not spontaneous, luteal regression in rhesus monkeys. Biol Reprod, 43, 507- 516, 1990. DOI: 10.1095/biolreprod43.3.507
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

Sığır Dil Dokusu Primer Kültürü Kullanılarak Yeni Bir Epitel veFibroblastik Hücre İzolasyonu ve Saflaştırma Yöntemi

Şükran YILMAZ

Keçi Mastitisinde Bakteriyel İzolasyon ve Antimikrobiyal DirençProfillerinin Tespiti

Mehmet AKAN, Ayhan BAŞTAN, Seyyide SARIÇAM İNCE, Seçkin SALAR, Ezgi DİKMEOĞLU, Tuğba OĞUZ

Arap ve İngiliz Atlarında Tarsal Bölgenin Radyografisi Kullanılarak Irkve Cinsiyetin Belirlenmesi

Gülsün PAZVANT, Ozan GÜNDEMİR, Çağla PARKAN YARAMIŞ, Dilek OLGUN ERDİKMEN, Sokol DURO, Hülya HARTOKA, William PÉREZ, Mustafa Orhun DAYAN

Kıvırcık Koyunlarında Gebelikte Plasentom Çapı, Plasentom Kan Akışı PikselAlanı ve Progesteron Konsantrasyonu İle Gebelik Yaşı Belirlenebilir mi?

Sinem Özlem ENGİNLER, Gamze EVKURAN DAL, Ali Can ÇETİN, Ahmet SABUNCU, Kerem BAYKAL

Kurşun Toksikasyonu Oluşturulan Ratlarda Maydanoz Yapraklarının(Petroselinum crispum) Sulu-Alkollü Ekstraktı Karaciğer HasarınıHafifletir

Fatemeh BASTAMPOOR, Seyed Ebrahim HOSSEINI, Mehrdad SHARIATI, Mokhtar MOKHTARI

İntrasitoplazmik Sperm Enjeksiyonu (ICSI) İle Üretilen Taze Embriyodave Vitrifiye Embriyoda Kalsiyum ($Ca^{2+}$) Salınımları ve Yoğunluğu

Widjiati WIDJIATI, Epy Muhammad LUQMAN, Zakiyatul FAIZAH, Viski Fitri HENDRAWAN, Helly Nurul KARIMA, Choirunil CHOTIMAH, Sutiman Bambang SOEMITRO, A. A. Muhammad Nur KASMAN

Bir Buzağıda Subkutan Kavernöz Servikofasiyal Lenfangiom veCerrahi Tedavisi

Hatice ERÖKSÜZ, Canan AKDENİZ İNCİLİ, Emine ÜNSALDI, Murat TANRISEVER, Yesari ERÖKSÜZ

Bulaşıcı Gastroenterit Virüsü İle Enfekte Domuz Bağırsak EpitelHücrelerinde Diferansiyel Gen Ekspresyonlarının Biyoinformatik Analizi

Jun QIAO, Xu-xuan ZHANG, Zhe WANG, Chen-hao JIANG, Yao LI, Yan REN, Guo-wei LAN, Jing XI

Çin’in Qinghai-Tibet Platosu Bölgesindeki Yabani KöpekgillerdeEchinococcus spp.’nin Eşzamanlı Saptanması İçin Multipleks PCRYönteminin Geliştirilmesi

Yong FU, Hong DUO, Xueyong ZHANG, Yingna JIAN, Zhihong GUO

Sığır Abort Materyallerinden Salmonella Dublin İdentifikasyonu veFilogenetik Pozisyonlandırılması

Ediz Kağan ÖZGEN, Berna YANMAZ