Isolation and Characterization of Olfactory Stem Cells from Canine Olfactory Mucosa

Olfaktorik kök hücreler nörodejeneratif hastalıkların tedavisinde büyük bir potansiyele sahiptir ve olfaktorik mukozaya kolay erişilebilirliği sayesinde hücre tedavisi için uygun bir adaydır. Bu çalışmanın amacı olfaktorik nörosfer kaynaklı hücrelere kadar farklılaştırılabilen olfaktorik kök hücrelerin izolasyonu, proliferasyonu ve karakterizasyonudur. Olfaktorik kök hücreler EGF (50 ng/ml) ve FGF (50 ng/ml) içeren serumsuz kültür vasatı içerisinde kültüre edildiğinde nörosferleri oluşturdular. Serum içeren kültür vasatında tekrar kültüre edildiklerinde olfaktorik nörosfer kaynaklı hücreleri şekillendirdiler. Gen ekspresyon analizleri OCT4, SOX2, Nanog, Nestin, ?-tubulin ve NCAM genlerinin olfaktorik kök hücrelerinde eksprese olduğunu ortaya çıkardı. Nanog, Nestin, Oct4, ? tubulin ve NCAM gen ekspresyonları nörosferlerde downregüle olurken, SOX2 geni upregüle oldu. Olfaktorik kök hücrelerin oluşturduğu nörosferlerin gen seviyeleri ile karşılaştırıldığında olfaktorik nörosfer kaynaklı hücrelerde ? tubulin ve NCAM gen ekspresyonları upregüle olurken OCT4, Nanog, Sox2 and Nestin mRNA ekspresyonları downregüle oldu. Köpeğin olfaktorik mukozası uygun alternatif bir kök hücre kaynağıdır ve köpek nörodejeneratif hastalıklarında hücre tedavisi için uygulanabilir.

Köpek Olfaktorik Mukozasindan Olfaktorik Kök Hücrelerin Izolasyonu ve Karakterizasyonu

Olfactory stem cells have great potential in the treatment of neurodegenerative diseases and they are good candidates for cell therapy due to the easy accessibility of olfactory mucosa. The main objectives of this study were isolation, proliferation and characterization of olfactory mucosa stem cells that were further differentiated into olfactory neurospheres derived cells. When grown on poly-Dlysine with a serum-free culture medium supplemented with EGF (50 ng/ml) and FGF2 (50 ng/ml), olfactory stem cells gave rise to neurospheres. When grown in serum-containing culture medium newly plated spheres gave rise to olfactory neurosphere derived cells. Gene expression analysis revealed that, OCT4, SOX2, Nanog, Nestin, ?-tubulin and NCAM were expressed in olfactory stem cells. While the mRNA expressions of Nanog, Nestin, Oct4, ?III-tubulin and NCAM were downregulated in neurospheres, the mRNA expression of SOX2 upregulated in neurospheres. According to the gene levels of neurospheres generated from olfactory stem cells, beta tubulin and NCAM gene expressions were upregulated, whereas OCT4, Nanog, Sox2 and Nestin mRNA expressions were downregulated in Olfactory neurospheres derived cells. Olfactory mucosa of canine is a suitable alternative source of stem cells and can be applied to cell therapy in neurodegenerative diseases.

___

  • Brann JH, Firestein SJ: A lifetime of neurogenesis in the olfactory system. Front Neurosci, 8, 182, 2014. DOI: 10.3389/Fnins.2014.00182
  • Schwarz SC, Schwarz J: Translation of stem cell therapy for neurological diseases. Transl Res, 156, 155-160, 2010. DOI: 10.1016/J.Trsl.2010.07.002
  • Einstein O, Karussis D, Grigoriadis N, Mizrachi-Kol R, Reinhartz E, Abramsky O, Ben-Hur T: Intraventricular transplantation of neural pre- cursor cell spheres attenuates acute experimental allergic encephalomyelitis. Mol Cell Neurosci, 24, 1074-1082, 2003. DOI: 10.1016/J.MCN.2003.08.009
  • Lacorazza HD, Flax JD, Snyder EY, Jendoubi M: Expression of human beta-hexosaminidase alpha-subunit gene (the gene defect of Tay-Sachs disease) in mouse brains upon engraftment of transduced progenitor cells. Nat Med, 2, 424-429, 1996. DOI: 10.1038/Nm0496-424
  • Ourednik J, Ourednik V, Lynch WP, Schachner M, Snyder EY: Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat Biotechnol, 20, 1103-1110, 2002. DOI: 10.1038/Nbt750
  • Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, Galli R, Del Carro U, Amadio S, Bergami A, Furlan R, Comi G, Vescovi AL, Martino G: Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature, 422, 688-694, 2003. DOI: 10.1038/Nature01552
  • Snyder EY, Taylor RM, Wolfe JH: Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature, , 367-370, 1995. DOI: 10.1038/374367a0
  • Chung DJ, Wong A, Hayashi K, Yellowley CE: Effect of hypoxia on generation of neurospheres from adipose tissue-derived canine mesenchymal stromal cells. Vet J, 199, 123-130, 2014. DOI: 10.1016/J. Tvjl.2013.10.020
  • Girard SD, Deveze A, Nivet E, Gepner B, Roman FS, Feron F: Isolating nasal olfactory stem cells from rodents or humans. J Vis Exp, 54, e2762, DOI: 10.3791/2762
  • Alves FR, Guerra RR, Fioretto ET, Delgado JC, Machado AAN, Ambrosio CE, Kerkis I, Miglino MA: Establishment of a protocol for obtention of neuronal stem cells lineages from the dog olfactory epithelium. Pesquisa Veterinaria Brasileira, 30, 363-372, 2010. DOI: 10.1590/ S0100-736X2010000400014
  • AD Veron MM, C Bienboire-Frosini, D Royer, P Asproni, A Cozzi, S D Girard, M Khrestchatisky, FS Roman, P Pageat: Are nasal stem cells a promising approach in geriatric veterinary medicine? In, IRSEA Institute of Research in Semiochemistry and Applied Ethology, International Congress: Marseille, France, 2014.
  • Antoine Veron CB-F, Manuel Mengoli, Dany Royer, Alessandro Cozzi, Stéphane D. Girard, Kevin Sadelli, Michel Khrestchatisky, François S. Roman , Patrick Pageat: Transplantation of olfactory stem cells in an aged dog displaying cognitive dysfunction: Preliminary clinical observation. In, FENS Forum, Milan, 2014.
  • Pageat P, Veron A, Royer D, Frosini C, Asproni P, Mengoli M, Cozzi A: Engraftment of senile dogs with olfactory stem cells: Preliminary results for a promising treatment. In, AVSAB Annual Congress: Denver, Colorado, July, 2014.
  • Duggan CD, Ngai J: Scent of a stem cell. Nat Neurosci, 10, 673-674, DOI: 10.1038/Nn0607-673
  • Mackay-Sim A: Stem cells and their niche in the adult olfactory mucosa. Arch Ital Biol, 148 (2): 47-58, 2010.
  • Wetzig A, Mackay-Sim A, Murrell W: Characterization of olfactory stem cells. Cell Transplant, 20, 1673-1691, 2011. DOI: 10.3727/09636 x576009
  • Delorme B, Nivet E, Gaillard J, Haupl T, Ringe J, Deveze A, Magnan J, Sohier J, Khrestchatisky M, Roman FS, Charbord P, Sensebe L, Layrolle P, Feron F: The human nose harbors a niche of olfactory ectomesenchymal stem cells displaying neurogenic and osteogenic properties. Stem Cells Dev, 19, 853-866, 2010. DOI: 10.1089/ Scd.2009.0267
  • Murrell W, Wetzig A, Donnellan M, Feron F, Burne T, Meedeniya A, Kesby J, Bianco J, Perry C, Silburn P, Mackay-Sim A: Olfactory mucosa is a potential source for autologous stem cell therapy for Parkinson's disease. Stem Cells, 26, 2183-2192, 2008. DOI: 10.1634/Stemcells.2008-0074
  • Tome M, Lindsay SL, Riddell JS, Barnett SC: Identification of nonepithelial multipotent cells in the embryonic olfactory mucosa. Stem Cells, 27, 2196-2208, 2009. DOI: 10.1002/Stem.130
  • Carvalho SDBdO: Establishing stem cell based systems to study neuropathologies. PhD Thesis, Universidade de Aveiro Secção Autónoma de Ciências da Saşde, 2012.
  • Reynolds BA, Weiss S: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, , 1707-1710, 1992. DOI: 10.1126/science.1553558
  • Lim JH, Boozer L, Mariani CL, Piedrahita JA, Olby NJ: Generation and characterization of neurospheres from canine adipose tissue- derived stromal cells. Cell Reprogram, 12, 417-425, 2010. DOI: 10.1089/ Cell.2009.0093
  • Kim EY, Lee KB, Yu J, Lee JH, Kim KJ, Han KW, Park KS, Lee DS, Kim MK: Neuronal cell differentiation of mesenchymal stem cells originating from canine amniotic fluid. Hum Cell, 27, 51-58, 2014. DOI: 10.1007/ S13577-013-0080-9
  • Chung CS, Fujita N, Kawahara N, Yui S, Nam E, Nishimura R: A comparison of neurosphere differentiation potential of canine bone marrow-derived mesenchymal stem cells and adipose-derived mesenchymal stem cells. J Vet Med Sci, 75 (7): 879-886, 2013.
  • Overall KL, Arnold SE: Olfactory neuron biopsies in dogs: A feasibility pilot study. Applied Animal Behaviour Science, 105, 351-357, 2007. DOI: 10.1016/j.applanim.2006.11.011
  • Singh N, Ranjan V, Zaidi D, Shyam H, Singh A, Lodha D, Sharma R, Verma U, Dixit J, Balapure AK: Insulin catalyzes the curcumin-induced wound healing: An in vitro model for gingival repair. Indian J Pharmacol, , 458-462, 2012. DOI: 10.4103/0253-7613.99304
  • Neetu S, Saroj Chooramani G, Rajeshwar Nath S, Tulika C, Satya Prakash A, Sanjay Kumar S, Devendra Kumar G, Anil Kumar B: In vitro maintenance of olfactory mucosa with enriched olfactory ensheathing cells. J Stem Cell Res Ther, 3, 1-8, 2013. DOI: 10.4172/2157-7633.1000132
  • Zhang X, Klueber KM, Guo Z, Lu C, Roisen FJ: Adult human olfactory neural progenitors cultured in defined medium. Exp Neurol, 186, 123, 2004. DOI: 10.1016/J.Expneurol.2003.10.022
  • Murrell W, Feron F, Wetzig A, Cameron N, Splatt K, Bellette B, Bianco J, Perry C, Lee G, Mackay-Sim A: Multipotent stem cells from adult olfactory mucosa. Dev Dyn, 233, 496-515, 2005. DOI: 10.1002/ Dvdy.20360
  • Barraud P, He X, Zhao C, Ibanez C, Raha-Chowdhury R, Caldwell MA, Franklin RJ: Contrasting effects of basic fibroblast growth factor and epidermal growth factor on mouse neonatal olfactory mucosa cells. Eur J Neurosci, 26, 3345-3357, 2007. DOI: 10.1111/J.1460-9568.2007.05950.X
  • Murdoch B, Roskams AJ: A novel embryonic nestin-expressing radial glia-like progenitor gives rise to zonally restricted olfactory and vomeronasal neurons. J Neurosci, 28, 4271-4282, 2008. DOI: 10.1523/ Jneurosci.5566-07.2008
  • Krolewski RC, Jang W, Schwob JE: The generation of olfactory epithelial neurospheres in vitro predicts engraftment capacity following transplantation in vivo. Exp Neurol, 229, 308-823, 2011. DOI: 10.1016/J. Expneurol.2011.02.014
  • Ülger H, Özdamar S, Unur E, Pratten M: The effect of basic fibroblast growth factor (bFGF) on in vitro embryonic growth, heart and neural tube development in rat. Kafkas Univ Vet Fak Derg, 15, 673-679, 2009. DOI: 10.9775/kvfd.2009.079-A
  • Tondreau T, Lagneaux L, Dejeneffe M, Massy M, Mortier C, Delforge A, Bron D: Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation, , 319-326, 2004. DOI: 10.1111/J.1432-0436.2004.07207003.X
  • Matigian N, Abrahamsen G, Sutharsan R, Cook AL, Vitale AM, Nouwens A, Bellette B, An JY, Anderson M, Beckhouse AG, Bennebroek M, Cecil R, Chalk AM, Cochrane J, Fan YJ, Feron F, McCurdy R, McGrath JJ, Murrell W, Perry C, Raju J, Ravishankar S, Silburn PA, Sutherland GT, Mahler S, Mellick GD, Wood SA, Sue CM, Wells CA, Mackay-Sim A: Disease-specific, neurosphere-derived cells as models for brain disorders. Dis Model Mech, 3, 785-798, 2010. DOI: 1242/dmm.005447
  • Hannan NR, Wolvetang EJ: Adipocyte differentiation in human embryonic stem cells transduced with Oct4 shRNA lentivirus. Stem Cells Dev, 18, 653-660, 2009. DOI: 10.1089/Scd.2008.0160
  • Adra CN: Olfactory stem cells and uses thereof. Google Patents, 2010.
  • Hayes B, Fagerlie SR, Ramakrishnan A, Baran S, Harkey M, Graf L, Bar M, Bendoraite A, Tewari M, Torok-Storb B: Derivation, characterization, and in vitro differentiation of canine embryonic stem cells. Stem Cells, 26, 465-473, 2008. DOI: 10.1634/Stemcells.2007-0640
  • Thomson M, Liu SJ, Zou LN, Smith Z, Meissner A, Ramanathan S: Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell, 145, 875-889, 2011. DOI: 10.1016/J.Cell.2011.05.017
  • Zhang S, Cui W: Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J Stem Cells, 6, 305-311, 2014. DOI: 4252/Wjsc.V6.I3.305
  • Suslov ON, Kukekov VG, Ignatova TN, Steindler DA: Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. Proc Natl Acad Sci USA, 99, 14506-14511, 2002. DOI: 1073/pnas.212525299
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

Effect of Piggery Microclimate on Ejaculate Performance of Artificial Insemination Boars

Dariusz KOWALEWSKI, Stanis?aw KONDRACKI, Krzysztof GÓRSKI, Magdalena BAJENA, Anna WYSOKI?SKA

RelA/p65-mediated Innate Immune Response Affecting NDV Replication in CEF

Zhao Xiong WANG, Zhao Xiong WANG, Min Hua SUN, Min Hua SUN, Yin-feng KANG

Treatment of Complete Urethral Obstruction by using Pneumatic Lithotripsy in a Dog: A Preliminary Report

MEHMET MADEN, MERVE İDER, Kurtuluş PARLAK, AHMET ÖZTÜRK

Presence of Salmonella spp., Listeria monocytogenes, Escherichia coli O157 and Nitrate-Nitrite Residue Levels in Turkish Traditional Fermented Meat Products (Sucuk and Pastırma)

SERKAN KEMAL BÜYÜKÜNAL, Fitnat Şule ŞAKAR, İlkay TURHAN, Çınar ERGİNBAŞ, SEMA SANDIKÇI ALTUNATMAZ, Filiz YILMAZ AKSU, Funda YILMAZ EKER, TOLGA KAHRAMAN

Evaluation of Serum and Ascitic Fluid Proteomes in Dogs with Dilated Cardiomyopathy

MERİÇ KOCATÜRK, Ahmet Tarık BAYKAL, Şeyma TÜRKSEVEN, Çiğdem ACIOĞLU, Carlos Fernando AGUDELO, ZEKİ YILMAZ

Why Systematic Examination is Important in Diagnosis of Eye Diseases? Lacrimal Punctal Atresia of a Dog Treated When He Reaches the Age of 15 Months

Sırrı AVKİ, KÜRŞAD YİĞİTARSLAN

A Rare Complication of the Postpartum Period in a Dog: Vaginal Evisceration

GÜNEŞ ERDOĞAN, EYYÜP HAKAN UÇAR, BÜŞRA KİBAR, Cevder PEKER, TUĞRA AKKUŞ

Göz Hastalıklarının Tanısında Sistematik Muayene Neden Önemlidir? Bir Köpekte Ancak 15 Aylık İken Tedavi Edilebilen Atresia Punkta Lakrimalis Olgusu

Kürşad YİĞİTARSLAN, Sırrı AVKİ

Morphological and Etiological Investigations in A Rotaviral Enteritis Outbreak in Calves

Ismet KALKANOV, Ivan DINEV, Marin ALEKSANDROV, Kiril DIMITROV, Ivan ZARKOV

Dimetilsülfoksit İlavesi ile Farklı Şekillerde Dondurulmuş Rumen Sıvısının in Vitro Sindirim Denemelerinde Kullanım Olanaklarının Araştırılması

NİHAT DENEK, ABDULLAH CAN, MEHMET AVCI