Hipoksi-toleranslı Rodentte Şiddetli Hipoksinin Nitrik Oksit Parametreleri Üzerine Etkileri: Nannospalax nehringi

Kör fareler (BMR) ölümcül hipoksiye oldukça toleranslı soliter rodentlerdir. Bu çalışmanın amacı, hipoksi ile ilişkili birçok fizyolojik ve patolojik süreçte rol alan nitrik oksit (NO) ve nitrik oksit enzimlerinin (NOS), şiddetli hipoksi altındaki BMR’lerdeki değişimlerini ortaya çıkartmaktır. Buna yönelik olarak Kars arazisinden 12 subadult (11-15 ay) erkek Nannospalax nehringi yakalandı. Yakalanan BMR’ler Normoksi (NG) ve Hipoksi grubu (HG) olmak üzere rastgele iki gruba ayrıldı (n=6). NG, 52 saat boyunca tamamen karanlık, normoksik koşullarda tutuldu. HG, 52 saat boyunca tamamen karanlık, içerisine %7’lik oksijen akıtılan glovebox kabin içerisinde tutuldu. Deney sonunda NG, normoksi altında ve HG %7 oksijen içeren glovebox kabin içerisinde öldürüldü. Plazma ve homojenize edilen doku örneklerinden NO, iNOS, eNOS, nNOS ve MDA seviyeleri spektrofotometrik olarak belirlendi. Tüm örneklere ait her parametrenin, NG’ye kıyasla HG’de yüksek olduğu belirlendi. Fakat özellikle, NO’nun, HG akciğer dokularında oldukça yüksek olduğu tespit edildi. Ayrıca böbrek, karaciğer ve akciğer eNOS seviyesinin, karaciğer iNOS seviyesinin ve de beyin eNOS ve nNOS seviyelerinin oldukça yüksek olduğu görüldü. Sonuç olarak, hipoksi altındaki Nannospalax nehringi’de NO ve NOS enzim üretimi hakkında elde ettiğimiz veriler, diğer hayvanlardan elde edilen verilerle uyumlu olsa da bazı noktalarda farklılıklar içermektedir. Bu farklılıkların, BMR’lerin hipoksiye karşı sahip olduğu farklı evrimsel adaptasyonlar olduğunu düşünmekteyiz.

The Effects of Severe Hypoxia on Nitric Oxide Parameters in Hypoxia-tolerant Rodent: Nannospalax nehringi

Blind mole rats (BMRs) are solitary rodents which are tolerant to severe hypoxia. The aim of this study is to reveal the changes in nitricoxide (NO) and nitric oxide enzymes (NOS), which are involved in many physiological and pathological processes related with hypoxia,in BMRs under severe hypoxia. For this purpose, 12 subadult (11-15 moths) male Nannospalax nehringi were captured in Kars location.Captured BMRs were divided into two groups as Normoxic (NG) and Hypoxic (HG) randomly (n=6). NG were kept in completely dark,normoxic conditions for 52 h. HG were kept inside completely dark glovebox chamber with 7% oxygen flow for 52 h. After experimentalprotocol, NG were sacrificed under normoxic conditions and HG were sacrificed inside glovebox chamber with 7% oxygen. NO, iNOS,eNOS, nNOS and MDA levels of plasm and homogenized tissue samples were detected spectrophotometrically. All parameters of eachsample were found to be high in HG compared to NG. But especially, NO was high in the lung tissues of HG. Additionally eNOS level ofthe kidney, liver and lung, iNOS levels of the liver and eNOS, and nNOS levels of the brain were found to be markedly high. Consequently,our data on NO and NOS enzyme production in Nannospalax nehringi tissues under hypoxia are compatible with the data obtained fromother animals, but it contains differences in some points. We believe that these differences are different evolutionary adaptations of BMRsto hypoxia.

___

  • 1. Northington FJ, Chavez-Valdez R, Martin LJ: Neuronal cell death in neonatal hypoxia ischemia. Ann Neurol, 69 (5): 743-758, 2011. DOI: 10.1002/ ana.22419
  • 2. Fuhrmann DC, Brüne B: Mitochondrial composition and function under the control of hypoxia. Redox Biol, 12, 208-215, 2017. DOI: 10.1016/j. redox.2017.02.012
  • 3. Hamanaka RB, Chandel NS: Mitochondrial reactive oxygen species regulate hypoxic signaling. Curr Opin Cell Biol, 21 (6): 894-899, 2009. DOI: 10.1016/j. ceb.2009.08.005
  • 4. Schofield CJ, Ratcliffe PJ: Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol, 5 (5): 343-354, 2004. DOI: 10.1038/nrm1366
  • 5. Weidemann A, Johnson RS: Biology of HIF-1α. Cell Death Differ, 15 (4): 621- 627, 2008. DOI: 10.1038/cdd.2008.12
  • 6. Corno AF, Milano G, Samaja M, Tozzi P, von Segesser LK: Chronic hypoxia: A model for cyanotic congenital heart defects. J Thorac Cardiovasc Surg, 124 (1): 105-112, 2002. DOI: 10.1067/mtc.2002.121302
  • 7. Pugh CW, Ratcliffe PJ: Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med, 9 (6): 677-684, 2003.
  • 8. Bolanos JP, Almeida A: Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta BBA-Bioenerg, 1411 (2-3): 415-436, 1999. DOI: 10.1016/ S0005-2728(99)00030-4
  • 9. Blitzer ML, Loh E, Roddy MA, Stamler JS, Creager MA: Endotheliumderived nitric oxide regulates systemic and pulmonary vascular resistance during acute hypoxia in humans. J Am Coll Cardiol, 28 (3): 591-596, 1996. DOI: 10.1016/0735-1097(96)00218-5
  • 10. Searles CD: Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression. Am J Physiol Cell Physiol, 291 (5): C803-C816, 2006. DOI: 10.1152/ajpcell.00457.2005
  • 11. Castello PR, David PS, McClure T, Crook Z, Poyton RO: Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: Implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab, 3 (4): 277-287, 2006. DOI: 10.1016/j.cmet.2006.02.011
  • 12. Andreakis N, D’Aniello S, Albalat R, Patti FP, Garcia-Fernandez J, Procaccini G, Sordino P, Palumbo A: Evolution of the nitric oxide synthase family in metazoans. Mol Biol Evol, 28 (1): 163-179, 2011. DOI: 10.1093/molbev/ msq179
  • 13. Alderton WK, Cooper CE, Knowles RG: Nitric oxide synthases: structure, function and inhibition. Biochem J, 357 (3): 593-615, 2001. DOI: 10.1042/ bj3570593
  • 14. Bickler PE, Buck LT: Hypoxia tolerance in reptiles, amphibians, and fishes: Life with variable oxygen availability. Annu Rev Physiol, 69, 145-170, 2007. DOI: 10.1146/annurev.physiol.69.031905.162529
  • 15. Ramirez JM, Folkow LP, Blix AS: Hypoxia tolerance in mammals and birds: from the wilderness to the clinic. Annu Rev Physiol, 69, 113-143, 2007. DOI: 10.1146/annurev.physiol.69.031905.163111
  • 16. Coşkun Y: A study on the morphology and karyology of Nannospalax nehringi (Satunin, 1898) (Rodentia: Spalacidae) from Northeast Anatolia, Turkey. Turk J Zool, 27 (3): 171-176, 2003.
  • 17. Nevo E: Stress, adaptation, and speciation in the evolution of the blind mole rat, Spalax, in Israel. Mol Phylogenet Evol, 66 (2): 515-525, 2013. DOI: 10.1016/j.ympev.2012.09.008
  • 18. Schülke S, Dreidax D, Malik A, Burmester T, Nevo E, Band M, Avivi A, Hankeln T: Living with stress: Regulation of antioxidant defense genes in the subterranean, hypoxia-tolerant mole rat, Spalax. Gene, 500 (2): 199-206, 2012. DOI: 10.1016/j.gene.2012.03.019
  • 19. Gorbunova V, Hine C, Tian X, Ablaeva J, Gudkov AV, Nevo E, Seluanov A: Cancer resistance in the blind mole rat is mediated by concerted necrotic cell death mechanism. Proc Natl Acad Sci U S A, 109 (47): 19392-19396, 2012. DOI: 10.1073/pnas.1217211109
  • 20. Shams I, Avivi A, Nevo E: Oxygen and carbon dioxide fluctuations in burrows of subterranean blind mole rats indicate tolerance to hypoxic– hypercapnic stresses. Comp Biochem Physiol A Mol Integr Physiol, 142 (3): 376- 382, 2005. DOI: 10.1016/j.cbpa.2005.09.003
  • 21. Widmer HR, Hoppeler H, Nevo E, Taylor CR, Weibel ER: Working underground: respiratory adaptations in the blind mole rat. Proc Natl Acad Sci U S A, 94 (5): 2062-2067, 1997. DOI: 10.1073/pnas.94.5.2062
  • 22. Avivi A, Gerlach F, Joel A, Reuss S, Burmester T, Nevo E, Hankeln T: Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax. Proc Natl Acad Sci U S A, 107, 21570-21575, 2010. DOI: 10.1073/pnas.1015379107
  • 23. Heth G: Evidence of aboveground predation and age determination of the preyed, in subterranean mole rats (Spalax ehrenbergi) in Israel. Mammalia, 55 (4): 529-542, 1991. DOI: 10.1515/mamm.1991.55.4.529
  • 24. Miranda KM, Espey MG, Wink DA: A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide, 5 (1): 62-71, 2001. DOI: 10.1006/niox.2000.0319
  • 25. Yoshioka T, Kawada K, Shimada T, Mori M: Lipid peroxidation in maternal and cord blood and protective mechanism against activated-oxygen toxicity in the blood. Am J Obstet Gynecol, 135 (3): 372-376, 1979. DOI: 10.1016/0002- 9378(79)90708-7
  • 26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the folin phenol reagent. J Biol Chem 193 (1): 265-275, 1951.
  • 27. Peacock AJ: ABC of oxygen: Oxygen at high altitude. BMJ, 317, 1063-1066, 1998. DOI: 10.1136/bmj.317.7165.1063
  • 28. Brunelle JK, Chandel NS: Oxygen deprivation induced cell death: An update. Apoptosis, 7 (6) : 475-482, 2002.
  • 29. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gélinas C, Fan Y, Nelson DA, Jin S, White E: Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 10 (1): 51-64, 2006. DOI: 10.1016/j.ccr.2006.06.001
  • 30. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT: Mitochondrial reactive oxygen species trigger hypoxiainduced transcription. Proc Natl Acad Sci U S A, 95 (20): 11715-11720, 1998. DOI: 10.1073/pnas.95.20.11715
  • 31. Kamiloğlu NN, Kaçar C, Güven A, Yıldız B, Kuru M, Kaya S, Eroğlu HA, Koç E: Changes in lipid peroxidation, glutathione and fertility in tuj sheep after combined administration of vitamin A and E and passive immunization with testosterone antibodies. Kafkas Univ Vet Fak Derg, 23 (3): 459-465, 2017. DOI: 10.9775/kvfd.2016.17053
  • 32. Yıldız F, Dönder Y, Arıkan TB: Sıçanlarda oluşturulan deneysel intestinal iskemi reperfüzyon modelinde quercitrinin etkileri. Ahi Evran Tıp Derg, 2 (1): 5-10, 2018.
  • 33. Fago A, Jensen FB: Hypoxia tolerance, nitric oxide, and nitrite: Lessons from extreme animals. Physiology, 30 (2): 116-126, 2015. DOI: 10.1152/ physiol.00051.2014
  • 34. Gutsaeva DR, Carraway MS, Suliman HB, Demchenko IT, Shitara H, Yonekawa H, Piantadosi CA: Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthasedependent mechanism. J Neurosci, 28 (9): 2015-2024, 2008. DOI: 10.1523/ jneurosci.5654-07.2008
  • 35. Erzurum SC, Ghosh S, Janocha AJ, Xu W, Bauer S, Bryan NS, Tejero J, Hemann C, Hille R, Stuehr DJ, Feelisch M, Beall CM: Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans. Proc Natl Acad Sci U S A, 104 (45): 17593-17598, 2007. DOI: 10.1073/pnas.0707462104
  • 36. Manukhina EB, Downey HF, Mallet RT: Role of nitric oxide in cardiovascular adaptation to intermittent hypoxia. Exp Biol Med, 231 (4): 343- 365, 2006. DOI: 10.1177/153537020623100401
  • 37. Sim JY: Nitric oxide and pulmonary hypertension. Korean J Anesthesiol, 58 (1): 4-14, 2010. DOI: 10.4097/kjae.2010.58.1.4
  • 38. Grimminger F, Spriestersbach R, Weissmann N, Walmrath D, Seeger W: Nitric oxide generation and hypoxic vasoconstriction in buffer-perfused rabbit lungs. J Appl Physiol, 78 (4): 1509-1515, 1995. DOI: 10.1152/jappl.1995.78.4.1509
  • 39. Nelin LD, Thomas CJ, Dawson CA: Effect of hypoxia on nitric oxide production in neonatal pig lung. Am J Physiol, 271 (1): H8-H14, 1996. DOI: 10.1152/ajpheart.1996.271.1.H8
  • 40. Pearl JM, Nelson DP, Wellmann SA, Raake JL, Wagner CJ, McNamara JL, Duffy JY: Acute hypoxia and reoxygenation impairs exhaled nitric oxide release and pulmonary mechanics. J Thorac Cardiovasc Surg, 119 (5): 931-938, 2000. DOI: 10.1016/S0022-5223(00)70088-2
  • 41. Rosenberger C, Rosen S, Heyman SN: Renal parenchymal oxygenation and hypoxia adaptation in acute kidney injury. Clin Exp Pharmacol Physiol, 33 (10): 980-988, 2006. DOI: 10.1111/j.1440-1681.2006.04472.x
  • 42.Palm F, Teerlink T, Hansell P: Nitric oxide and kidney oxygenation. Curr Opin Nephrol Hypertens, 18 (1): 68-73, 2009. DOI: 10.1097/MNH.0b013e32831c4cdf
  • 43. Balasubramaniam V, Tang JR, Maxey A, Plopper CG, Abman SH: Mild hypoxia impairs alveolarization in the endothelial nitric oxide synthasedeficient mouse. Am J Physiol Lung Cell Mol Physiol, 284 (6): L964-L971, 2003. DOI: 10.1152/ajplung.00421.2002
  • 44. Balasubramaniam V, Maxey AM, Morgan DB, Markham NE, Abman SH: Inhaled NO restores lung structure in eNOS deficient mice recovering from neonatal hypoxia. Am J Physiol Lung Cell Mol Physiol, 291 (1): L119-L127, 2006. DOI: 10.1152/ajplung.00395.2005
  • 45. Rus A, Peinado MÁ, Castro L, Del Moral ML: Lung eNOS and iNOS are reoxygenation time dependent upregulated after acute hypoxia. Anat Rec, 293 (6): 1089-1098, 2010. DOI: 10.1002/ar.21141
  • 46. Barrier A, Olaya N, Chiappini F, Roser F, Scatton O, Artus C, Franc B, Dudoit S, Flahault A, Debuire B, Azoulay D, Lemoine A: Ischemic preconditioning modulates the expression of several genes, leading to the overproduction of IL-1Ra, iNOS, and Bcl-2 in a human model of liver ischemiareperfusion. FASEB J, 19 (12): 1617-1626, 2005. DOI: 10.1096/fj.04-3445com
  • 47. Yin JH, Yang DI, Ku G, Hsu CY: iNOS expression inhibits hypoxia-inducible factor-1 activity. Biochem Biophys Res Commun, 279 (1): 30-34, 2000. DOI: 10.1006/bbrc.2000.3896
  • 48. Ho JJD, Man HSJ, Marsden PA: Nitric oxide signaling in hypoxia. J Mol Med, 90 (3): 217-231, 2012. DOI: 10.1007/s00109-012-0880-5
  • 49. Zhang J, Han Y, Wang Y, Cheng X, Wang CJ: Neuronal nitric oxide synthase inhibition reduces brain damage by promoting collateral recruitment in a cerebral hypoxia-ischemia mice model. Eur Rev Med Pharmacol Sci, 22 (10): 3166-3172, 2018. DOI: 10.26355/eurrev_201805_15077
  • 50. van den Tweel ERW, Nijboer C, Kavelaars A, Heijnen CJ, Groenendaal F, van Bel F: Expression of nitric oxide synthase isoforms and nitrotyrosine formation after hypoxia-ischemia in the neonatal rat brain. J Neuroimmunol, 167 (1-2): 64-71, 2005. 10.1016/j.jneuroim.2005.06.031
  • 51. van den Tweel ERW, Peeters-Scholte CMPCD, van Bel F, Heijnen CJ, Groenendaal F: Inhibition of nNOS and iNOS following hypoxia-ischaemia improves long-term outcome but does not influence the inflammatory response in the neonatal rat brain. Dev Neurosci, 24 (5): 389-395, 2002. DOI: 10.1159/000069044
  • 52.Hsu YC, Chang YC, Lin YC, Sze CI, Huang CC, Ho CJ: Cerebral microvascular damage occurs early after hypoxia–ischemia via nNOS activation in the neonatal brain. J Cereb Blood Flow Metab, 34 (4): 668-676, 2014. DOI: 10.1038/ jcbfm.2013.244
  • 53. Tümer C: Fokal serebral iskemide nitrik oksidin rolü. Dicle Tıp Derg, 3 (29): 91-101, 2002.
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

The Effects of Different Organic Acid Treatments on Some Microflora and Pathogen Listeria monocytogenes of White Brine Cheese

Hakan TAVŞANLI, Reyhan İRKİN, Ihsan KISADERE

An Extraordinary Fetal Death: Inguinal Hernia in a Terrier Dog

Hasan ORAL, Mushap KURU, Semra KAYA, Murat Can DEMİR

Study of FecXG Polymorphism in Beetal Goat and Its Phylogenetic Relationship

Atia BASHEER, Mehwish SHAREEF, Mahjabeen ISLAM, Imran ZAHOOR

The Effect of Rocuronium and Sugammadex on Progesterone Levels in Pregnant Rabbits Under General Anesthesia

RUKİYE TÜRK, SEMRA KAYA, İlksen DÖNMEZ, İSA ÖZAYDIN, OĞUZ MERHAN, Sadık YAYLA, Celal Şahin ERMUTLU, CİHAN KAÇAR, Uğur AYDIN, ÖZGÜR AKSOY, Ürfettin HÜSEYİNOĞLU

Sıradışı Bir Fötal Ölüm: Terrier Bir Köpekte İnguinal Herni

Semra KAYA, Murat Can DEMİR, Hasan ORAL, Mushap KURU

The Effects of Zinc Methionine Chelate and ZnSO4 on the Growth Performance and Immune Function of the Weaned Piglets and on IPEC-J2 Cell Immune Function

Wen-Bin CHEN, Re-Jun FANG, Xin WU, Zi bin CHENG, Yun bo TIAN

Insect Bite Hypersensitivity (Sweet Itch) in a Non-Descript Riding Local Breed Mare

Tanveer AHMAD, Muhammad Saleem AKHTAR, Muhammad Mazhar AYAZ, Muhammad mudassar NAZIR, Ejaz AHMAD, Muhammad raza HAMEED, Maqbool HUSSAIN

Köpek ve Kedilerden Ampisilin ve Vankomisin Dirençli Enterococcus faecium İzolasyonu

Özkan ASLANTAŞ, Erhan TEK

Avustralya Merinosu ve Çin Merinosu Hibritlerinde Yün Miktarı İle Mikrosatellit Arasındaki İlişkinin Araştırılması

Min YANG, Jian MU, Yifan XIE, Manjun ZHAI, Zongsheng ZHAO

Sığır İn Vitro Embriyo Üretiminde Sistamin ve 13-Cis-Retinoik Asitin Etkisi

Mehran Farhoodi MOGHADAM, Abdolreza RANJBAR, Mohammad Amin ESLAMPOUR