Farelerde Subkutan Lewis Akciğer Kanseri Modelinde İstiridye Enzimatik Hidrolizatının Akciğer Metastazı Üzerine Önleyici Etkisi ve Mekanizması

İstiridye enzimatik hidrolizatının (OEH) Lewis akciğer kanserinin metastazı üzerine inhibitör etkisinin araştırılması ve inhibitör mekanizmanın aydınlatılması amacıyla subkutan Lewis akciğer kanseri modeline göre C57BL / 6J erkek farelerde 5 hafta boyunca OEH’in düşük (LOEH), orta (MOEH) ve yüksek (HOEH) dozlarının günlük gavajı uygulandı. Subkutan tümörün hacmi ve ağırlığı ölçüldü, akciğer metastatik nodüller sayıldı, tümör ilişkili makrofajlar (TAM; CD11b+F4/80+) sayıldı, deri altı tümör yapılarda E-kaderin, Vimentin, microRNA-21 ve microRNA-218 ekspresyonu ölçüldü. OEH’in MOEH ve HOEH sağaltım gruplarının subkutan tümör ağırlığını önemli ölçüde azalttığı (P=0.013, P=0.007) ve doza bağlı olarak akciğer metastazını önemli ölçüde engellediği (χ2=13.16, P=0.004) saptandı. E-kaderin ekspresyonu, yüksek dozda istatistiksel bir artış gösterirken, tüm OEH gruplarında Vimentin ekspresyonu ve subkutan tümördeki TAM hücre sayısında önemli ölçüde azalma saptandı (P

Inhibitory Eff ect and Mechanism of Oyster Enzymatic Hydrolysate on Lung Metastasis in the Subcutaneous Lewis Lung Cancer Model in Mice

In order to investigate the inhibitory eff ects of oyster enzymatic hydrolysate (OEH) on the metastasis of Lewis lung cancer and to evaluate itsmechanism, daily gavage of low(LOEH), medium(MOEH) and high (HOEH) doses of OEH for 5 weeks was administered based on the subcutaneousLewis lung cancer model in C57BL/6J male mice, the volume and weight of subcutaneous tumor were measured, the lung metastatic noduleswere counted, the number of tumor-associated-macrophages (TAMs; CD11b+F4/80+), the expression of E-cadherin, Vimentin, microRNA-21and microRNA-218 in subcutaneous tumor were measured. It was found that OEH treatment significantly decreased the subcutaneous tumorweight for the MOEH and HOEH groups (P=0.013, P=0.007) and significantly inhibited lung metastasis in a dose-dependent manner (χ2=13.16,P=0.004). The expression of E-cadherin showed a statistical increase at high dose, while the expression of Vimentin and the number of TAMs insubcutaneous tumor was significantly decreased at all OEH doses (P

___

  • 1. Goldstraw P, Crowley J, Chansky K, Giroux DJ, Groome PA, Rami-Porta R, Postmus PE, Rusch V, Sobin L, International Association for the Study of Lung Cancer International Staging Committee, Participating Institutions: The IASLC lung cancer staging project: Proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol, 2 (8): 706-714, 2007. DOI: 10.1097/ JTO.0b013e31812f3c1a
  • 2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet‐Tieulent J, Jemal A: Global cancer statistics, 2012. CA Cancer J Clin, 65 (2): 87-108, 2015. DOI: 10.3322/ caac.21262
  • 3. Nie LG: Screening for lung cancer‐Opportunities and challenges. Chin J Lung Cancer, 18 (12): 721-724, 2015. DOI: 10.3779/j.issn.1009-3419.2015.12.01
  • 4. Herbst RS, Morgensztern D, Boshoff C: The biology and management of non-small cell lung cancer. Nature, 553, 446-454, 2018. DOI: 10.1038/ nature25183
  • 5. Gu K, Li MM, Shen J, Liu F, Cao JY, Jin S, Yu Y: Interleukin-17-induced EMT promotes lung cancer cell migration and invasion via NF-κB/ZEB1 signal pathway. Am J Cancer Res, 5 (3): 1169-1179, 2015.
  • 6. Lamouille S, Xu J, Derynck R: Molecular mechanisms of epithelialmesenchymal transition. Nat Rev Mol Cell Biol, 15, 178-196, 2014. DOI: 10.1038/ nrm3758
  • 7. Galdiero MR, Garlanda C, Jaillon S, Marone G, Mantovani A: Tumor associated macrophages and neutrophils in tumor progression. J Cell Physiol, 228 (7): 1404-1412, 2013. DOI: 10.1002/jcp.24260
  • 8. Chen J: Expression of miRNA-218 in non-small cell lung cancer and its relationship with prognosis. J Clin Pulm Med, 24 (6): 1102-1104, 2019. DOI: 10.3969/j.issn.1009-6663.2019.06.035
  • 9. Luan L, Han B, Wang CF, Bai Y, Teng M, Huan DW, Xu HT, Wang EH: MiR- 218-1-3p expression in non-small cell lung cancer and its clinical significance. J China Med Univ, 43 (2): 181-183, 2014.
  • 10. Zhang CL, Ge SL, Hu CL, Yang N, Zhang JR: MiRNA-218, a new regulator of HMGB1, suppresses cell migration and invasion in non-small cell lung cancer. Acta Biochim Biophys Sin, 45 (12): 1055-1061, 2013. DOI: 10.1093/abbs/gmt109
  • 11. Liu ZL, Wang H, Liu J, Wang ZX: MicroRNA-21 (miR-21) expression promotes growth, metastasis, and chemo-or radioresistance in non-small cell lung cancer cells by targeting PTEN. Mol Cell Biochem, 372, 35-45, 2013. DOI: 10.1007/s11010-012-1443-3
  • 12. Fang L, Ma HX, Li LH, Yang XQ, Rong H, Zhu CB: Analysis and evaluation of nutrient composition in Ostrea rivularis from south China sea coast. Sci Tech Food Indus, 39 (2): 301-307, 2018. DOI: 10.13386/j.issn1002-0306.2018.02.056
  • 13. Fang L, Li GM, Xu SS, Lu L, Gu RZ, Cai MY, Lu J: Research progress of bioactive peptides from oyster. J Food Saf Qual, 9 (7): 1548-1553, 2018. DOI: 10.3969/j.issn.2095-0381.2018.07.015
  • 14. Dai CM, Liao XY, Ye ZG: Review on chemical composition, pharmacological activity and application of Marine Traditional Chinese Medicine Oyster. Nat Prod Res Dev, 28(3): 471-474, 2016. DOI: 10.16333/j.1001-6880.2016.3.028
  • 15. Feng L, Zhao WJ, Chang WZ: Research progress in the pharmacological action and clinical application of oyster. Inf Tradit Chin Med, 28 (1): 114-116, 2011.
  • 16. Li CZ, Pan ZF, Chen YH, Zhang YQ, Huang XR, Huang JX: Research progress in active substance of oyster softbody. Sci Tech Food Indus, 33 (8): 412- 415, 2012. DOI: 10.13386/j.issn1002-0306.2012.08.105
  • 17. Zhao XL: Study on the biological activity of oyster and its food development. Jiangsu Condiment and Subsidiary Food, 26 (4): 37-41, 2009. DOI: 10.16782/j.cnki.32-1235/ts.2009.04.013
  • 18. Umayaparvathi S, Meenakshi S, Vimalraj V, Arumugam M, Sivagami G, Balasubramanian T: Antioxidant activity and anticancer effect of bioactive peptide from enzymatic hydrolysate of oyster (Saccostrea cucullata). Biomed Prev Nutr, 4 (3): 343-353, 2014. DOI: 10.1016/j.bionut.2014.04.006
  • 19. Bertram JS, Janik P: Establishment of a cloned line of Lewis lung carcinoma cells adapted to cell culture. Cancer Lett, 11 (1): 63-73, 1980. DOI: 10.1016/0304-3835(80)90130-5
  • 20. Zhu H, Kauffman ME, Trush MA, Jia ZQ, Li YR: A simple bioluminescence imaging method for studying cancer cell growth and metastasis after subcutaneous injection of Lewis lung carcinoma cells in syngeneic C57BL/6 mice. React Oxyg Species (Apex), 5 (14): 118-125, 2018. DOI: 10.20455/ ros.2018.813
  • 21. Ma XM, Yu MW, Zhang GL, Yu J, Cao KX, Sun X, Yang GW, Wang XM: Comparison of mouse models of Lewis lung carcinoma subcutaneously transplanted at different sites. Acta Lab Anim Sci Sin, 25 (4): 386-390, 2017. DOI: 10.3969/j.issn.1005-4847.2017.04.008
  • 22. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals: Guide for the Care and Use of Laboratory Animals. 8th ed., Washington (DC): National Academies Press (US), 2011. DOI: 10.17226/12910
  • 23. Zhou LP, Ma K, Ma ZG, Bian J, Zhou H, Ji XE, Li SY: Effect of jian-pi-bu –shen-fang synergism chemotherapy on mice lewis lung cancer cells and its ultrastructure. J Ningxia Med Univ, 37 (7): 755-758, 2015. DOI: 10.16050/j.cnki. issn1674-6309.2015.07.008
  • 24. Xu D, Lin F, Zhu XY, Liu WY, Chen XW, Feng JQ, Fan AQ, Cai MY, Xu YJ: Immunomodulatory effect of oyster peptide on immunosuppressed mice. J Peking Univ (Health Sci), 48 (3): 392-397, 2016. DOI: 10.3969 /j.issn.1671- 167X.2016.03.003
  • 25. Tang M, Wang SM, Wei YL, Fu JT: Inhibition effects of Yuxiao San combined with cisplatin on transplanted tumor growths via upregulation of nm-23 and downregulation of K-ras in Lewis lung cancer mice. Oncol Lett, 17 (1): 1267-1273, 2019. DOI: 10.3892/ol.2018.9673
  • 26. Zhou QQ, Zhang Z, Song LY, Huang CH, Cheng Q, Bi SX, Hu XJ, Yu RM: Cordyceps militaris fraction inhibits the invasion and metastasis of lung cancer cells through the protein kinase B/glycogen synthase kinase 3β/βcatenin signaling pathway. Oncol Lett, 16, 6930-6939, 2018. DOI: 10.3892/ol.2018.9518
  • 27. Zhang JT, Qin XY, Jia FH, Yuan Y, Zhou M, Fang L, Zhang RX, Gu RZ, Liu WY: In vitro antioxidation and ACE inhibition of ovalbumin oligopeptides. Food Ferment Indus, 45 (12): 67-74, 2019. DOI: 10.13995/j.cnki.11-1802/ts.019561
  • 28. Gu RZ, Liu WY, Lin F, Jin ZT, Chen L, Yi WX, Lu J, Cai MY: Antioxidant and angiotensin I-converting enzyme inhibitory properties of oligopeptides derived from black-bone silky fowl (Gallus gallus domesticus Brisson) muscle. Food Res Int, 49 (1): 326-333, 2012. DOI: 10.1016/j.foodres.2012.07.009
  • 29. Wang ZF, Yang HY, Liu XB, Zhang RX, Liu SL: Effect of topotecan on survival and tumor metastasis of non-small cell lung cancer mouse models and its mechanism. Oncol Prog, 18 (1): 26-29,61, 2020.
  • 30. Hsieh PF, Chueh PJ, Liu PF, Liao JW, Hsieh MK: Immune response evoked by tumor-associated NADH oxidase (tNOX) confers potential inhibitory effect on lung carcinoma in a mouse model. Am J Cancer Res, 9 (4): 740-751, 2019.
  • 31. Shackelford C, Long G, Wolf J, Okerberg C, Herbert R: Qualitative and quantitative analysis of nonneoplastic lesions in toxicology studies. Toxicol Pathol, 30 (1): 93-96, 2002. DOI: 10.1080/01926230252824761
  • 32. Chen YH, Li CZ, Li DR: The progress on biological activity and separation of the bioactive peptides of oyster protein. Food Res Dev, 36 (15): 135-138, 2015. DOI: 10.3969/j.issn.1005-6521.2015.15.033
  • 33. Lundquist P, Artursson P: Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev, 106 (Pt B): 256-276, 2016. DOI: 10.1016/j.addr. 2016.07.007
  • 34. Deng WY, Li N, Xia XX, Luo SX, Li SY: Status and progress of immunonutrition in tumour. J Chin Oncol, 20 (8): 619-624, 2014. DOI: 10.11735/ j.issn.1671-170X.2014.08.B002
  • 35. Szefel J, Danielak A, Kruszewski WJ: Metabolic pathways of L-arginine and therapeutic consequences in tumors. Adv Med Sci, 64 (1): 104-110, 2019. DOI: 10.1016/j.advms.2018.08.018
  • 36. Li QF, Huang DC, Shi SL, Liang Y, Li XQ: The regulation effects of bioactive peptides of oyster (BPO-L) on the cell cycle and gene expression of human lung adenocarcinoma A549 cells. J Xiamen Univ Nat Sci, 47 (1): 104–110, 2008. DOI: 10.3321/j.issn:0438-0479.2008.01.023
  • 37. Liang Y, Huang DC, Shi SL, Li QF: Effects of oyster low molecular mass bioactive peptides on the morphology and ultrastucture of human lung adenocarcinoma A549 cells. J Xiamen Univ Nat Sci, 45 (z1): 177–180, 2006. DOI:10.3321/j.issn:0438-0479.2006.z1.044
  • 38. Wu MT, Zhang HX, Zhang M, Bi Y, Xu HR, Ling K, Jin QG, Liu WY: Inhibition and mechanism of oyster enzymatic hydrolysate on Lewis lung cancer. Food Ferment Indus, 46 (11): 98-104, 111, 2020. DOI: 10.13995/j.cnki.11- 1802/ts.023063
  • 39. Ma XP, Zhang H, Wang YP, Zhang L, MaJ, Peng T, Leng J: Downregulation of E-cadherin upregulates the phosphorylation level of GSK-3β in human hepatoma cells. Acta Univ Med Nanjing, 32 (7): 896-902, 2012.
  • 40. Thiery JP, Acloque H, Huang RYJ, Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell, 139, 871-890, 2009. DOI: 10.1016/ j.cell.2009.11.007
  • 41. Ko H, So Y, Jeon H, Jeong MH, Choi HK, Ryu SH, Lee SW, Yoon HG, Choi KC: TGF-β1-induced epithelial–mesenchymal transition and acetylation of Smad2 and Smad3 are negatively regulated by EGCG in human A549 lung cancer cells. Cancer Lett, 335 (1): 205-213, 2013. DOI: 10.1016/j.canlet. 2013.02.018
  • 42. Zhu QS, Rosenblatt K, Huang KL, Lahat G, Brobey R, Bolshakov S, Nguyen T, Ding Z, Belousov R, Bill K, Luo X, Lazar A, Dicker A, Mills GB, Hung MC, Lev D: Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene, 30, 457-470, 2011. DOI: 10.1038/onc.2010.421
  • 43. Xia D, Li YM, Tan XN, Kuang C, Guo JS: Effects of Feifukang on the growth of tumor and expression of E-cadherin,vimentin, and TGF-β in mice with Lewis lung cancer. J Tradit Chin Med Univ Hunan, 35 (3): 30-33, 2015. DOI: 10.3969/j. issn.1674-070X.2015.03.009.030.04
  • 44. Chanmee T, Ontong P, Konno K, Itano N: Tumor-associated macrophages as major players in the tumor microenvironment. Cancers, 6 (3): 1670-1690, 2014. DOI: 10.3390/cancers6031670
  • 45. Mantovani A, Allavena P: The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med, 212 (4): 435-445, 2015. DOI: 10.1084/jem.20150295
  • 46. Munn DH, Bronte V: Immune suppressive mechanisms in the tumor microenvironment. Curr Opin Immunol, 39, 1-6, 2016. DOI: 10.1016/j.coi. 2015.10.009
  • 47. Noy R, Pollard JW: Tumor-associated macrophages: From mechanisms to therapy. Immunity, 41 (1): 49-61, 2014. DOI: 10.1016/j.immuni.2014.06.010
  • 48. Ostuni R, Kratochvill F, Murray PJ, Natoli G: Macrophages and cancer: From mechanisms to therapeutic implications. Trends Immunol, 36 (4): 229- 239, 2015. DOI: 10.1016/j.it.2015.02.004
  • 49. Davalos V, Esteller M: MicroRNAs and cancer epigenetics: A macrorevolution. Curr Opin Oncol, 22 (1): 35-45, 2010. DOI: 10.1097/CCO.0b013e328333dcbb
  • 50. Kiran C, Deepika P: Lung cancer: microRNA and target database. Chin J Lung Cancer, 15 (7): 429-434, 2012. DOI: 10.3779/j.issn.1009-3419.2012.08.11
  • 51. Davidson MR, Larsen JE, Yang IA, Hayward NK, Clarke BE, Duhig EE, Passmore LH, Bowman RV, Fong KM: MicroRNA-218 is deleted and downregulated in lung squamous cell carcinoma. PLoS One, 5 (9): e12560, 2010. DOI: 10.1371/journal.pone.0012560
  • 52. Wu DW, Cheng YW, Wang J, Chen CY, Lee H: Paxillin predicts survival and relapse in non-small cell lung cancer by microRNA-218 targeting. Cancer Res, 70 (24): 10392-10401, 2010. DOI: 10.1158/0008-5472.CAN-10-2341
  • 53. Chen P, Zhao YL, Li YJ: MiR-218 inhibits migration and invasion of lung cancer cell by regulating Robo1 expression. Chin J Lung Cancer, 20 (7): 452-458, 2017. DOI: 10.3779/j.issn.1009-3419.2017.07.03
  • 54. Gong XW, Zheng LM, Sheng DQ, Zhang LH: Research progress of miR- 21 in non-small cell lung cancer. Chin Bull Life Sci, 30 (7): 765-770, 2018. DOI: 10.13376/j.cbls/2018091
  • 55. Zhang XB, Peng F: Expression of microRNA-21 in peripheral blood and cancer tissues of patients with non-small cell lung cancer and its mechanism of involvement in tumor inhibition by regulating PTEN protein. Chin J Gerontol, 37 (22): 5571-5573, 2017.
  • 56. Wang Y, Li JY, Tong LP, Zhang JW, Zhai AX, Xu K, Wei L, Chu M: The prognostic value of miR-21 and miR-155 in non-small-cell lung cancer: A metaanalysis. Jpn J Clin Oncol, 43 (8): 813-820, 2013. DOI: 10.1093/jjco/hyt084
  • 57. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY: miR-21-mediated tumor growth. Oncogene, 26, 2799-2803, 2007. DOI: 10.1038/sj.onc.1210083
  • 58. Wang XC, Wang W, Zhang ZB, Zhao J, Tan XG, Luo JC: Overexpression of miRNA-21 promotes radiation-resistance of non-small cell lung cancer. Radiat Oncol, 8:146, 2013. DOI: 10.1186/1748-717X-8-146
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

Bıldırcın (Coturnix coturnix japonica) Rasyonlarına Probiyotik (Lactobacillus farciminis) İlavesinin Büyüme Performansı, Kan Antioksidan Kapasite ve Sekal Bazı Kısa Zincirli Yağ Asidi Konsantrasyonları Üzerine Etkileri

Gültekin YILDIZ, Oğuz MERHAN, Özlem DURNA AYDIN

In Vitro Eff ect of Pelargonium sidoides on Promastigote Forms of Leishmania infantum and Leishmania tropica

Erdener BALIKÇI, Nurdan GÜNGÖR, Fetiye KOLAYLI, Murat HÖKELEK

Response of Probiotics and Yeast Added in Diff erent Doses to Rations of Anatolian Merino Lambs on Fattening Performance, Meat Quality, Duodenum and Rumen Histology

EMRE TEKCE, BÜLENT BAYRAKTAR, Vecihi AKSAKALI, Enes DERTLİ, Aybike KAMİLOĞLU, Musa KARAALP, Sema TİMURKAAN, Mehmet GÜL

Farklı Sperm Sulandırıcılarının 16°C’de Saklanan Hu Koç Sperm Kalitesi Parametreleri Üzerine Etkisi

Liuming ZHANG, Tariq SOHAIL, Yongjun LI, Yanhu WANG, Changjiang CHU, Yunkui FENG, Jinliang MA

A New Aspect in Neonatal Calf Diarrhea: Presence of Escherichia coli CS31A at Unexpected Ratio

Ümit ÖZCAN, Merve Gizem SEZENER, Başar Ulaş SAYILKAN, Arzu FINDIK, Emre KULLUK, Şeyda YAMAN

Türk Van Kedilerinde Kalça Kemiklerinin (Ossa coxae) Bilgisayarlı Tomografi Tabanlı Morfometrik Analizi

İsmail DEMİRCİOĞLU, Osman YILMAZ

Anadolu Merinos Kuzularının Rasyonlarına Farklı Dozlarda İlave Edilen Probiyotiklerin ve Mayanın Besi Performansı, Et Kalitesi, Rumen ve Duodenum Üzerine Yanıtı

Bülent BAYRAKTAR, Emre TEKCE, Musa KARAALP, Mehmet GÜL, Vecihi AKSAKALI, Enes DERTLİ, Aybike KAMİLOĞLU, Sema TİMURKAAN

Kırgızistan Yaylalarında Üretilen Kısrak Sütü ve Kımız’ın AFM1 Seviyelerinin Belirlenmesi

Hayrunnisa ÖZLÜ, Mustafa ATASEVER, Meryem AYDEMİR ATASEVER, Fatih Ramazan İSTANBULLUGİL

Brucella melitensis M5-90 Suşunun lpsA Geninin Silinmesi Brucella İle Enfekte Fare Makrofaj Hücrelerinde Kaspaz-11 ile İndüklenen Klasik Olmayan Piroptozis Yolaklarını Teşvik Eder

Meihua YANG, Yuanzhi WANG, Shengnan SONG, Yajun YANG, Hai JIANG

A Diagnostic Survey of Chigger Mites (Acari: Trombiculidae) of Wild Rodents and Soricomorphs in Turkey

Mustafa AÇICI, Sadık DEMİRTAŞ, ALİ TÜMAY GÜRLER, CENK SONER BÖLÜKBAŞ, ŞİNASİ UMUR