Effect of total isoflavones found in soybean on vitellogenin production in common carp

Balık diyetlerinde temel protein kaynağı olan balık ununun yerine soya fasulyesi yemi yaygın olarak kullanılmaktadır. Fakat soya fasulyesinin fitoestrojenik özellikleri balıklarda üremeyi etkileyeceğinden, diyetlerde soya fasulyesi bazlı yemlerin kullanılması endişe oluşturmaktadır. Bu çalışmanın amacı çeşitli konsantrasyonlarda hazırlanan toplam isoflavon içeren soya fasülyesi özütleri ile sazangil balıklarında vitellojenin proteini üretimi arasında bir ilişkinin olup olmadığını belirlemektir. Beş farklı dozda (içerdikleri toplam isofavon oranlarına göre 0, 250, 500, 1.000 ve 10.000 mg/kg) hazırlanan ticari soya fasulyesi özütleri fitoestrojen konsantrasyonlarının vitellojenin sentezine etkisini belirlemek için dişi ve erkek sazanda, Cyprinius carpio L., test edilmiştir. Bütün balık grupları içinde özütlerin büyümeye etkisinde herhangi bir farklılık bulunamamıştır. Soya özütlerinin bütün konsantrasyonları erkeklerde GSI değerini düşürmüş, fakat dişilerin GSI değerinde 500 mg/kg soya özütü konsantasyonuna kadar arttırmış daha sonra da yüksek dozlarda da düşürmüştür. Bu da plazma içindeki vitellojenin seviyesinin inhibisyonu ve indüklenmesi ile ilişkilendirilmiştir. GSI ve vitellojenin değerindeki değişikliklerin, fitoestrojenlere maruz kalan bireyleri belirleyebilecek hassas bir belirteç olduğunu ortaya çıkarmıştır. Daha yüksek dozlardaki isoflavonlar her iki cinsiyetteki balıklar için daha fazla vitellojenin üretmiştir. Bu çalışma sonucunda fitoestrojen içeren soya fasulyesi özütleriyle hazırlanan yemlerle beslenen her iki cinsiyetteki balıkların vitellojenin üretiminin indüklenmesi açıkça gösterilmiştir. GSI değerleri ve yüksek oranda vitellojenin üretimi, fitoestrojen içeren soya fasulyesinin balıkların endokrin sistemlerinde tahrip edici etkisi olduğunu işaret etmiştir. Balık yemlerinin hazırlanmasında, endokrin bozucu etkiye sahip olan soya fasulyesi ürünlerinin kullanımı dikkate alınması gereken bir husus olmalıdır.

Soya fasulyesinde bulunan toplam isoflavonların sazan balıklarında vitellojenin üretimine etkisi

Soybean meal is used most extensively as a replacement to fishmeal as the main protein source in fish diets. However, there is concern about the effect of soybean-based diets on reproductive development of the fish because of the phytoestrogenic properties of soybean. The objective of the present study was to determine whether a relationship exists between the concentration of soybean extract containing total isoflavones in diet and the production of vitellogenin protein in cyprinid fish. Five different doses (0, 250, 500, 1.000, and 10.000 mg/kg based on total isoflavones content) of commercial soybean extract were tested to determine the effect of pyhtoestrogens concentration on vitellogenin synthesis in female and male carp, Cyprinius carpio L. There were no significant differences in the growth of fish between any of the groups. All concentrations of soybean extract lowered male gonadosomatic index (GSI), but female GSI was increased in diets including up to 500 mg/kg soybean extract, and then decreased at higher doses. This was associated by an inhibition and induction, respectively, in plasma vitellogenin levels. Changes in GSI and vitellogenin appeared to be sensitive marker for detecting phytoestrogens exposure. Higher concentrations of isoflavones resulted in a higher amount of vitellogenin produced in both male and female fish. Our results clearly showed that exposure to phytoestrogens found in soybean extract significantly induces vitellogenin production in both males and females, in a dose-response manner. GSI and high vitellogenin production indicated that phytoestrogens found in soybean disrupt the endocrine system of fish. The endocrine disruptor effect of soybean products must be considered in fish meal preparation.

___

  • 1. Tolman J: Nature's Hormone Factory: Endocrine Disrupters in the Natural Environment Issue Analysis, Competitive Enterprice Institute Publication, 1-12. Washington D.C., US,1996.
  • 2. LC Laboratories: Reagents for signal transduction research. Catalog/Handbook of LC Laboratories, 3-4, Woburn, MA, US,2007.
  • 3. Franke AA: Quantitation of phytoestrogens in legumes by HPLC. J Agr Food Chem, 42, 1905-1013, 1994.
  • 4. Braden AWH, Hart NK, Lamberton LA: The oestrogenic activity and metabolism of certain isoflavones in sheep. Aust J Agric Res, 18, 335-348, 1967.
  • 5. Wong E, Flux DS: The oestrogenic activity of red clover isoflavones and some of their degradation products. J Endocrinol, 24, 341-348, 1962.
  • 6. Perel E, Lindner HR: Dissociation of uterotrophic action from implantation-inducing activity in two non-steroidal oestrogens (coumestrol and genistein). J Reprod Fertil, 21, 171-175, 1970.
  • 7. Tang BY, Adams NR: Effects of equol on oestrogen receptors and on synthesis on DNA and protein in the immature rat uterus. J Endocrinol, 85, 291-297, 1980.
  • 8. Holmes P, Phillips B: Human health effects of phytoestrogens. In, Hester RE, Harrison RM (Eds): Issues in Environmental Science and Technology, Royal Society of Chemistry, vol. 12, pp. 109-134, Cambridge, UK, 1999.
  • 9. Viola S, Mokady S, Rappaport U, Arieli Y: Partial and complete replacement of fishmeal by soybean meal in feeds for intensive culture of carp. Aquaculture, 26, 223-236, 1982.
  • 10. Shiau SY, Chuang JL, Sun CL: Inclusion of soybean meal in tilapia (Oreochromis niloticus O. aureus) diets at two protein levels. Aquaculture, 65, 251-261, 1987.
  • 11. Webster CD, Tidwell JH, Goodgame LS, Yancey DH, Mackey L: Use of soybean meal and distillers grains with solubles as partial or total replacement of fish meal in diets for channel catfish, Ictalurus punctatus. Aquaculture, 106, 301- 309, 1992.
  • 12. Kikuchi K: Use of defatted soybean meal as a substitute for fish meal in diets of Japanese flounder (Paralichthys olivaceus). Aquaculture, 179, 3-11, 1999.
  • 13. Ayhan V, Diler İ, Arabacı M, Sevgili H: Enzyme supplementation to soybean based diet in Gilthead Sea Bream (Sparus aurata): Effects on growth parameters and nitrogen and phosphorus excretion. Kafkas Univ Vet Fak Derg, 14 (2): 161-168, 2008.
  • 14. Pelissero C, Le Menn F, Kaushick F: Estrogenic effect of dietary soya bean meal on vitellogenesis in cultured siberian sturgeon Acipenser baeri. Gen Comp Endocr, 83, 447-457,1991.
  • 15. Pelissero C, Foucher J L, Bennetau B, Dunogues J, Flouriot G, Sumpteru JP: Invitro estrogenic activity of phytoestrogens on liver vitellogenin synthesis in the rainbow trout Oncorhynchus mykiss. Gen Comp Endocr, 8, 247-249, 1991.
  • 16. Ko K, Malison JA, Reed JD: Effect of genistein on the growth and reproductive function of male and female yellow perch Perca flavescens. J World Aquacult Soc, 30, 73-79,1999.
  • 17. Pollack SJ, Ottinger MA, Sullivan CV, Woods LC: The effects of the soy isoflavone genistein on the reproductive development of striped bass. N Am J Aquacult, 65, 226-234,2003.
  • 18. Tzchori I, Degani G, Elisha R, Eliyahu R, Hurvitz A, Vaya J, Moav B: The influence of phytoestrogens and oestradiol- 17b on growth and sex determination in the European eel (Anguilla anguilla). Aquac Res, 35, 1213-1219, 2004.
  • 19. Mommsen TP, Walsh PJ: Vitellogenesis and oocyte assembly. In, Hoar WS, Randall DJ, Donaldson EM (Eds): Fish Physiology, Academic Press, vol 9A, pp. 347-406, New York, USA, 1988.
  • 20. Janssen PAH, Lambert JGD, Goos HJ: The annual cycle and the influence of pollution on vitellogenesis in the flounder, Pleuronectes flesus. J Fish Biol, 47, 509-523, 1995.
  • 21. Heppell SA, Denslow ND, Folmar LC, Sullivan CV: Universal assay of vitellogenin as a biomarker for environmental estrogens. Environ Health Persp, 103, 9-15, 1995.
  • 22. Kime DE, Nash JP, Scott AP: Vitellogenesis as a biomarker of reproductive disruption by xenobiotics. Aquaculture, 177, 345-352, 1999.
  • 23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin Phenol reagent. J Biol Chem, 193, 265-275, 1951.
  • 24. Towbin H, Staehelin T, Gordon J: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. P Natl Acad Sci USA, 76, 4350-4354, 1979.
  • 25. Arinç E, Sen A: Hepatic cytochrome P4501A and 7- ethoxyresorufin O-deethylase induction in mullet and common sole as an indicator of toxic organic pollution in Izmir Bay, Turkey. Mar Environ Res, 48, 147-160, 1999.
  • 26. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680- 684, 1970.
  • 27. Ey PL, Ashman LK: The use of alkaline phosphataseconjugated anti-immunoglobulin with immunoblots for determining the specificity of monoclonal antibodies to protein mixtures. Method Enzymol, 121, 497-509, 1986.
  • 28. Scott AP, Sumpter JP, Hardiman PA: Hormone changes during ovulation in the rainbow trout (Salmo gairdneri). Gen Comp Endocr, 49, 128-134, 1983.
  • 29. Wester PW, Canton JH, Bisschop A: Histopathological study of Poecilia reticulate (guppy) after long-term β- hexachlorocyclohexane exposure. Aquat Toxicol, 6, 271-296,1985.
  • 30. Jobling S, Nolan M, Tyler CR, Brighty G, Sumpter JP: Wide spread sexual disruption in wild fish. Environ Sci Technol, 32, 2498-2506, 1998.
  • 31. Gimeno S, Komen H, Gerritsen A, Bowmer T: Feminisation of young males of the common carp, Cyprinus carpio, exposed to 4-tert-pentylphenol during sexual differentiation. Aquat Toxicol, 43, 77-92, 1998.
  • 32. Chang CF, Hung CY, Chiang MC, Lan SC: The concentrations of plasma sex steroids and gonadal aromatase during controlled sex differentiation in grey mullet, Mugil cephalus. Aquaculture, 177, 37- 45, 1999.
  • 33. Scholz S, Gutzeit HO: 17-alpha-Ethinylestradiol affects reproduction, sexual differentiation and aromatase gene expression of the medaka (Oryzias latipes). Aquat Toxicol, 50, 363-373, 2000.
  • 34. Devlin HR, Nagahama Y: Sex determination and sex differentiation in fish: An overview of genetic, physiological, and environmental influences. Aquaculture, 208, 191-364,2002.
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

Variance components and genetic parameter estimates using random regression models on test day milk yields of holstein friesians

ÇİĞDEM TAKMA, Yavuz AKBAŞ

DMBA ile indüklenmiş kobayların beyin dokusundaki bazı elemetler üzerine alfa lipoik asidin etkisi

HARUN ÇİFTÇİ, AHMET ÖZKAYA, ALPASLAN DAYANGAÇ, ALİ ÖLÇÜCÜ, Sait ÇELIK, Zafer ŞAHİN, Sema ATEŞ

Treatment of long bone fractures with acrylic external fixation in dogs and cats: retrospective study in 30 cases (2006-2008)

AHMET ÖZAK, CENK YARDIMCI, HATİCE ÖZLEM NİSBET, Yusuf Sinan ŞİRİN

Anaplasmosisli sığırlarda ısı şok protein (HSP), malondialdehit (MDA), nitrik oksit (NO) ve interlökin (IL-6, IL-10) düzeylerinin araştırılması

Sema ERGÖNÜL, TÜNAY KONTAŞ AŞKAR

New data on bird Haemoproteids and microfilariae in european blackbird (Turdus merula) in Turkey

YUNUS EMRE BEYHAN, Gokmen Zafer PEKMEZCI, Kiraz ERCIYAS, ŞİNASİ UMUR

İneklerde beslenme davranışları

CAVİT ARSLAN

Immunohistochemical demonstration of nitrosative tissue damage in copper ınduced liver toxicity in Japanese quails

MUSA KARAMAN, HASAN ÖZEN, KADİR ÖZCAN, Mehmet TUZCU

Urtica dioica L. (ısırgan otu)'nin metanol ve su ekstraktının 7.12-dimetilbenz(a)antrasen uygulanan tavşan tüylerindeki iz element seviyeleri üzerine etkileri

İDRİS TÜREL, ALİ ERTEKİN, GÖKHAN OTO, F. Çağlar ÇELİKEZEN, SEMİH YAŞAR

Kuzeydoğu Anadolu bölgesi sınır illerinde bulunan sığırlarda viral solunum sistemi enfeksiyonlarının seroprevalansı

YAKUP YILDIRIM, VOLKAN YILMAZ, Ali Rıza Farajı MAJARASHIN

Seroprevalence of Viral upper respiratory ınfections in dairy cattle

RÜSTEM DUMAN, Sibel YAVRU, MEHMET KALE, OĞUZHAN AVCI