WEAK FINITELY DUAL QUASI-CONJUGATIVE RELATIONS

WEAK FINITELY DUAL QUASI-CONJUGATIVE RELATIONS

The concept of 'weak finitely regular relations' was introduced by Shuzhen Luo and Xiaoquan Xu in 2019 and applied to partially ordered sets.In this article, this idea is extended to weak finality of dually quasi-conjugative relations was introduced in 2013 by this author.

___

  • G. Jiang, L. Xu, J. Cai and G. Han. Normal relations on sets and applications. Int. J. Contemp. Math. Sci., 6(15)(2011), 721--726.
  • G. Jiang and L. Xu. Dually normal relations on sets and applications. Semigroup Forum, 85(1)(2012), 75--80.
  • S. Luo and X. Xu. Weak finitely regular relations and applications. Semigroup forum, https://doi.org/10.1007/s00233-019-10042-z
  • D. A. Romano. Quasi-conjugative relations on sets. Mat-Kol (Banja Luka)}, 19(3)(2013), 5--10.
  • D. A. Romano and M. Vin\v ci\'c. Finitelly quasi-conjugative relations. Bull. Int. Math. Virtual Inst., 3(1)(2013), 29--34.
  • D. A. Romano. Two new classes of relations. In: Mateljevi\'c, Stanimirovi\'c, Mari\'c and Svetlik (eds.) Symposium 'Mathematics and applications', (24-25 May, 2013)(pp. 34--39). Faculty of Mathematics, University of Belgrade, Belgrade 2014. Available online at: http://alas.matf.bg.ac.rs/ konferencija/zbornik.html.
  • B. M. Schein. Regular elements of the semigroup of all binary relations. Semigroup Forum, 13(1976), 95--102.
  • M. Vin\v ci\'c and D. A. Romano. Finitely bi-normal relations. Gulf J. Math., 3(3)(2015), 101--105.
  • A. Zarecki\v i. The semigroup of binary relations. Mat. Sbornik, 61(3)(1963), 291-305 (In Russian)
  • X. Q. Xu and Y. M. Liu. Relational representations of hypercontinuous lattices. In: Zhang, G.Q., Lawson, J.D., Liu, Y.M., Luo, M.K. (eds.) \Domain Theory, Logic, and Computation (pp. 65-–74). Kluwer Academic, Dordrecht, 2003.