SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, p, µ)−PREINVEX FUNCTIONS

SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR (ϕ, p, µ)−PREINVEX FUNCTIONS

In the present paper, a new class of convex functions isintroduced which is called (fi,p,mu)-preinvex functions.With the help of this new class we prove some of Hermite-Hadamard type inequalities for (fi,p,mu)-preinvex functions.

___

  • 1 : S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, preprint, (2014).
  • 2 : S. S. Dragomir, n-points inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, preprint, (2014).
  • 3 : E. K. Godunova and V. I. Levin,Inequalities for functions of a broad class that contains convex , monotone and some other forms of functions. (Russian.) Numerical mathematics and mathematical physics (Russian.), 138-142, 166, Moskov. Gos. Ped. Inst. Moscow, 1985.
  • 4 : S. K. Khattri, Three proofs of the inequality e<(1+(1/n))^{n+0.5}, Amer. Math. Monthly, 117(3), 273-277 (2010).
  • . 5 : A. Kilbas , H. M. Srivastava , J. J. Trujilo : Theory and applications of fractional differential equations, Elsevier B. V. ,Amsterdam, Neherlands, (2006).
  • 6 : M. A. Latif , Some inequalities for differentiable prequasiinvex functions with applications, Konuralp J. Math., 1(2), 17-29, 2013. 7: M. A. Latif and S. S. Dragomir, Some Hermite-Hadamard type inequalities for functions whose partial derivates in absloute value are preinvex on the co-oordinates, Facta Universitasis (NIS) Ser. Math. Inform. 28(3), 257-270, (2013).