MULTISCALE APPROACH OF THE EQUIVALENT THERMALCONDUCTIVITY OF MODIFIED FOAM-FILLED AND NON-FILLED HOLLOWBRICK AND A BRICK WALL

MULTISCALE APPROACH OF THE EQUIVALENT THERMALCONDUCTIVITY OF MODIFIED FOAM-FILLED AND NON-FILLED HOLLOWBRICK AND A BRICK WALL

The energy loss through building components resulting in higher energy consumption, thus energy saving has become an essential aspect in design and comfort. This study aims to optimize the thermal insulation of red clay bricks used in the walls of buildings by using a multiscale method. The finite element approach in ABAQUS software has been used to simulate the bricks under different configurations and conditions. Due to cost and time challenges and difficulties in simulation and complex calculations, simplified and applicable equations have been derived to calculate thermal insulation properties. The results show that the paper’s brick design has a significant thermal conductivity reduction that could reach more than one-third of the other corresponding studies. The study goes to fill the hollow bricks by the insulation polyurethane foam (PUF) and comparing the results with air hollowbricks. Besides its other advantages, the outcomes reveal that using the PUF has a noticeable desired-influence in thermal insulation when considering the heat transfer by convection and radiation inside the air cavity of bricks.

___

  • [1] Sun J, Fang L. Numerical simulation of concrete hollow bricks by the finite volume method. Int J Heat Mass Transf 2009;52:5598–607. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.008.
  • [2] Al-Hadhrami LM, Ahmad A. Assessment of thermal performance of different types of masonry bricks used in Saudi Arabia. Appl Therm Eng 2009;29:1123–30. https://doi.org/10.1016/j.applthermaleng.2008.06.003.
  • [3] Mohsen MS, Akash BA. Some prospects of energy savings in buildings. Energy Convers Manag 2001. https://doi.org/10.1016/S0196-8904(00)00140-0.
  • [4] Sadineni SB, Madala S, Boehm RF. Passive building energy savings: A review of building envelope components. Renew Sustain Energy Rev 2011;15:3617–31. https://doi.org/10.1016/j.rser.2011.07.014.
  • [5] Zhang L, Luo T, Meng X, Wang Y, Hou C, Long E. Effect of the thermal insulation layer location on wall dynamic thermal response rate under the air-conditioning intermittent operation. Case Stud Therm Eng 2017;10:79–85. https://doi.org/10.1016/j.csite.2017.04.001.
  • [6] Du J, Chan M, Pan D, Shang L, Deng S. The impacts of daytime external envelope heat gain/storage on the nighttime cooling load and the related mitigation measures in a bedroom in the subtropics. Energy Build 2016;118:70–81. https://doi.org/10.1016/j.enbuild.2016.02.010.
  • [7] Lee S-T, Ramesh NS. Polymeric foams: mechanisms and materials. CRC Press; 2004.
  • [8] Li LP, Wu ZG, He YL, Lauriat G, Tao WQ. Optimization of the configuration of 290 × 140 × 90 hollow clay bricks with 3-D numerical simulation by finite volume method. Energy Build 2008;40:1790–8. https://doi.org/10.1016/j.enbuild.2008.03.010.
  • [9] Li LP, Wu ZG, Li ZY, He YL, Tao WQ. Numerical thermal optimization of the configuration of multiholed clay bricks used for constructing building walls by the finite volume method. Int J Heat Mass Transf 2008;51:3669–82. https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.008.
  • [10] Alghamdi AA, Alharthi HA. Multiscale 3D finite-element modelling of the thermal conductivity of clay brick walls. Constr Build Mater 2017;157:1–9. https://doi.org/10.1016/j.conbuildmat.2017.09.081.
  • [11] Sun J, Fang L, Han J. Optimization of concrete hollow brick using hybrid genetic algorithm combining with artificial neural networks. Int J Heat Mass Transf 2010;53:5509–18. https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.006.
  • [12] Habib E, Cianfrini M, De Lieto Vollaro R. Definition of Parameters Useful to Describe Dynamic Thermal Behavior of Hollow Bricks. Energy Procedia 2017;126:50–7. https://doi.org/10.1016/j.egypro.2017.08.056.
  • [13] Yu J, Huang J, Xu X, Ye H, Xiong C, Wang J, et al. A semi-dynamic heat transfer model of hollow block ventilated wall for thermal performance prediction. Energy Build 2017;134:285–94. https://doi.org/10.1016/j.enbuild.2016.11.001.
  • [14] Yu J, Yang J, Xiong C. Study of dynamic thermal performance of hollow block ventilated wall. Renew Energy 2015;84:145–51. https://doi.org/10.1016/j.renene.2015.07.020.
  • [15] Xiong C, Yu J, Yang J. Study of the Simplified Dynamic Thermal Network Model for the Hollow Block Ventilated Wall. Procedia Eng 2015;121:1304–11. https://doi.org/10.1016/j.proeng.2015.09.008.
  • [16] del Coz Díaz JJ, García Nieto PJ, Betegón Biempica C, Prendes Gero MB. Analysis and optimization of the heat-insulating light concrete hollow brick walls design by the finite element method. Appl Therm Eng 2007;27:1445–56. https://doi.org/10.1016/j.applthermaleng.2006.10.010.
  • [17] del Coz Díaz JJ, García Nieto PJ, Suárez Sierra JL, Peñuelas Sánchez I. Non-linear thermal optimization and design improvement of a new internal light concrete multi-holed brick walls by FEM. Appl Therm Eng 2008. https://doi.org/10.1016/j.applthermaleng.2007.06.023.
  • [18] Del Coz Diaz JJ, Garcia-Nieto PJ, Alvarez-Rabanall FP, Alonso-Martínez M, Dominguez-Hernandez J, Perez-Bella JM. The use of response surface methodology to improve the thermal transmittance of lightweight concrete hollow bricks by FEM. Constr Build Mater 2014;52:331–44. https://doi.org/10.1016/j.conbuildmat.2013.11.056.
  • [19] Li J, Meng X, Gao Y, Mao W, Luo T, Zhang L. Effect of the insulation materials filling on the thermal performance of sintered hollow bricks. Case Stud Therm Eng 2018;11:62–70. https://doi.org/10.1016/j.csite.2017.12.007.
  • [20] Antoniadis KD, Assael MJ, Tsiglifisi CA, Mylona SK. Improving the design of greek hollow clay bricks. Int J Thermophys 2012;33:2274–90. https://doi.org/10.1007/s10765-012-1294-x.
  • [21] Al-Hazmy MM. Analysis of coupled natural convection-conduction effects on the heat transport through hollow building blocks. Energy Build 2006;38:515–21. https://doi.org/10.1016/j.enbuild.2005.08.010.
  • [22] Bouchair A. Steady state theoretical model of fired clay hollow bricks for enhanced external wall thermal insulation. Build Environ 2008;43:1603–18. https://doi.org/10.1016/j.buildenv.2007.10.005.
  • [23] Ling H, Wang L, Chen C, Chen H. Numerical investigations of optimal phase change material incorporated into ventilated walls. Energy 2019. https://doi.org/10.1016/j.energy.2019.01.066.
  • [24] Ghalandari M, Mirzadeh Koohshahi E, Mohamadian F, Shamshirband S, Chau KW. Numerical simulation of nanofluid flow inside a root canal. Eng Appl Comput Fluid Mech 2019. https://doi.org/10.1080/19942060.2019.1578696.
  • [25] Ahmadi MH, Mohseni-Gharyehsafa B, Farzaneh-Gord M, Jilte RD, Kumar R, Chau K wing. Applicability of connectionist methods to predict dynamic viscosity of silver/water nanofluid by using ANN-MLP, MARS and MPR algorithms. Eng Appl Comput Fluid Mech 2019. https://doi.org/10.1080/19942060.2019.1571442.
  • [26] Baghban A, Jalali A, Shafiee M, Ahmadi MH, Chau K wing. Developing an ANFIS-based swarm concept model for estimating the relative viscosity of nanofluids. Eng Appl Comput Fluid Mech 2019. https://doi.org/10.1080/19942060.2018.1542345.
  • [27] Ramezanizadeh M, Alhuyi Nazari M, Ahmadi MH, Chau K wing. Experimental and numerical analysis of a nanofluidic thermosyphon heat exchanger. Eng Appl Comput Fluid Mech 2019. https://doi.org/10.1080/19942060.2018.1518272.
  • [28] Rasooli A, Itard L. In-situ characterization of walls’ thermal resistance: An extension to the ISO 9869 standard method. Energy Build 2018. https://doi.org/10.1016/j.enbuild.2018.09.004.
  • [29] Coz Díaz JJ de., Nieto PJG, Sierra JLS, Biempica CB. Nonlinear thermal optimization of external light concrete multi-holed brick walls by the finite element method. Int J Heat Mass Transf 2008. https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.029.
  • [30] Aouba L, Coutand M, Perrin B, Lemercier H. Predicting thermal performance of fired clay bricks lightened by adding organic matter: Improvement of brick geometry. J Build Phys 2015;38:531–47. https://doi.org/10.1177/1744259115571078.
  • [31] Arendt K, Krzaczek M, Florczuk J. Numerical analysis by FEM and analytical study of the dynamic thermal behavior of hollow bricks with different cavity concentration. Int J Therm Sci 2011;50:1543–53. https://doi.org/10.1016/j.ijthermalsci.2011.02.027.
  • [32] Wang F, Wang D, Wang X, Yao J. A data analysis method for detecting wall thermal resistance considering wind velocity in situ. Energy Build 2010;42:1647–53. https://doi.org/10.1016/j.enbuild.2010.04.007.
  • [33] Eaves D. Handbook of polymer foams. UK: Rapra Technology Ltd.; 2004. https://doi.org/10.5860/choice.42-0962.
  • [34] Ionescu M. Chemistry and technology of polyols for polyurethanes. . 2007. https://doi.org/10.1002/pi.2159.
  • [35] Gama N V., Ferreira A, Barros-Timmons A. Polyurethane foams: Past, present, and future. Materials (Basel) 2018;11. https://doi.org/10.3390/ma11101841.
  • [36] Jelle BP. Traditional, state-of-the-art and future thermal building insulation materials and solutions - Properties, requirements and possibilities. Energy Build 2011. https://doi.org/10.1016/j.enbuild.2011.05.015.
  • [37] Carriço CS, Fraga T, Carvalho VE, Pasa VMD. Polyurethane foams for thermal insulation uses produced from castor oil and crude glycerol biopolyols. Molecules 2017;22. https://doi.org/10.3390/molecules22071091. [ 38] Wang M, Pan N. Modeling and prediction of the effective thermal conductivity of random open-cell porous foams. Int J Heat Mass Transf 2008;51:1325–31. https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.031.
  • [39] Fang W, Tang Y, Zhang H, Tao W. Numerical predictions of the effective thermal conductivity of the rigid polyurethane foam. J Wuhan Univ Technol Mater Sci Ed 2017;32:703–8. https://doi.org/10.1007/s11595- 017-1655-1.
  • [40] Kirpluks M, Kalnbunde D, Benes H, Cabulis U. Natural oil based highly functional polyols as feedstock for rigid polyurethane foam thermal insulation. Ind Crops Prod 2018;122:627–36. https://doi.org/10.1016/j.indcrop.2018.06.040.
  • [41] Choi SW, Jung JM, Yoo HM, Kim SH, Lee W Il. Analysis of thermal properties and heat transfer mechanisms for polyurethane foams blown with water. J Therm Anal Calorim 2018;132:1253–62. https://doi.org/10.1007/s10973-018-6990-8.
  • [42] Demharter A. Polyurethane rigid foam, a proven thermal insulating material for applications between +130°C and -196°C. Cryogenics (Guildf) 1998;38:113–117. https://doi.org/10.1016/S0011- 2275(97)00120-3.
  • [43] Druma AM, Alam MK, Druma C. Analysis of thermal conduction in carbon foams. Int J Therm Sci 2004;43:689–95. https://doi.org/10.1016/j.ijthermalsci.2003.12.004.
  • [44] Gama NV, Amaral C, Silva T, Vicente R, Coutinho JAP, Barros-Timmons A, et al. Thermal energy storage and mechanical performance of crude glycerol polyurethane composite foams containing phase change materials and expandable graphite. Materials (Basel) 2018. https://doi.org/10.3390/ma11101896.
  • [45] Zhang L, Zhang M, Hu L, Zhou Y. Synthesis of rigid polyurethane foams with castor oil-based flame retardant polyols. Ind Crops Prod 2014. https://doi.org/10.1016/j.indcrop.2013.10.043.
  • [46] Kausar A. Polyurethane Composite Foams in High-Performance Applications: A Review. Polym - Plast Technol Eng 2018. https://doi.org/10.1080/03602559.2017.1329433.
  • [47] Incropera FP, DeWitt DP, Bergman TL, Lavine AS. Fundamentals of Heat and Mass Transfer 6th Edition. 2011. https://doi.org/10.1016/j.applthermaleng.2011.03.022.
  • [48] Baghban A, Sasanipour J, Pourfayaz F, Ahmadi MH, Kasaeian A, Chamkha AJ, et al. Towards experimental and modeling study of heat transfer performance of water- SiO2 nanofluid in quadrangular cross-section channels. Eng Appl Comput Fluid Mech 2019. https://doi.org/10.1080/19942060.2019.1599428.
  • [49] Ahmadi MH, Ghahremannezhad A, Chau K-W, Seifaddini P, Ramezannezhad M, Ghasempour R. Development of Simple-to-Use Predictive Models to Determine Thermal Properties of Fe2O3/WaterEthylene Glycol Nanofluid. Eng Appl Comput Fluid Mech 2019. https://doi.org/10.3390/computation7010018. [50] Dassault Systemes Simulia Corp. Abaqus 6.14. 2017.
  • [51] Hashim A, Kyaw S, Sun W. Modelling fracture of aged graphite bricks under radiation and temperature. Nucl Mater Energy 2017;11:3–11. https://doi.org/10.1016/j.nme.2017.03.038.