NUMERICAL INVESTIGATION OF NON-UNIFORM HEAT TRANSFER ENHANCEMENT IN PARABOLIC TROUGH SOLAR COLLECTORS USING DUAL MODIFIED TWISTED-TAPE INSERTS

In this paper, a numerical investigation is presented on heat transfer augmenting by using various kinds of modified multiple twisted tape inserted in solar parabolic trough collectors. The pressurized water is considered as working fluid and Reynolds number varying from 10000 to 20000. The received heat flux on the solar absorber was assumed non-uniform due to hemispheric insolation of sun. The obtained numerical results for the Nusselt number, friction factor and thermal performance are presented for each cases. Various types of twisted tape including single twisted tape, normal, perforated, center-cleared, square, and V-cut dual twisted tape are considered and analyzed. The numerical simulations are performed by a commercial CFD code, ANSYS FLUENT 18.2. The obtained results revealed that at Re=10000 and 20000, the average Nusselt numbers of case with dual v-cut twisted tapes are more than plaine tube by 19.58 and 17.44%, respectively. Moreover, thermal performance of all cases with various twisted tapes is larger than 1 which means that utilizing twisted tape with various configurations leads to more thermal performance than plain tube. The thermal performances of case with dual square-cut twisted tapes (as the best case) for Re=10000 and 20000 are more than plain tube by about 16 and 12% improvement, respectively. Furthermore, for the case with perforated dual twisted tape (as the case with lowest thermal performance), the thermal performances for Re=10000 and 20000 are more than plain tube by about 9.2 and 7% improvement, respectively.

___

  • [1] Gozgor G., CKM L. and Lu Z. Energy consumption and economic growth: New evidence from the OECD countries. Energy 2018;153;27-34. doi: 10.1016/j.energy.2018.03.158.
  • [2] Apergis N. and Payne J.E. Renewable and non-renewable energy consumption-growth nexus: Evidence from a panel error correction model. Energy Economics 2012;34(3);733-738. doi: 10.1016/j.eneco.2011.04.007.
  • [3] Tiwari, G.N. and R.K. Mishra, Advanced renewable energy sources. 2012: Royal Society of Chemistry.
  • [4] Duffie, J.A. and W.A. Beckman, Solar engineering of thermal processes. 2013: John Wiley & Sons.
  • [5] Behar O., Khellaf A. and Mohammedi K. A review of studies on central receiver solar thermal power plants. Renewable and sustainable energy reviews 2013;23;12-39. doi: 10.1016/j.rser.2013.02.017.
  • [6] Changa C., Xu C., Wu Z.Y., Li X., Zhang Q.Q. and Wang Z.F. Heat transfer enhancement and performance of solar thermal absorber tubes with circumferentially non-uniform heat flux. Energy Procedia 2015;69;320-327. doi: 10.1016/j.egypro.2015.03.036.
  • [7] Chahine K., Murr R., Ramadan M., El Hage H. and Khaled M. Use of parabolic troughs in HVAC applications–Design calculations and analysis. Case Studies in Thermal Engineering 2018;12;285-291. doi: 10.1016/j.csite.2018.04.016.
  • [8] Akbarzadeh S. and Valipour M.S. Heat transfer enhancement in parabolic trough collectors: A comprehensive review. Renewable and Sustainable Energy Reviews 2018;92;198-218. doi: 10.1016/j.rser.2018.04.093.
  • [9] Habibi H., Zoghi M., Chitsaz A. and Shamsaiee M. Thermo-economic performance evaluation and multi-objective optimization of a screw expander-based cascade Rankine cycle integrated with parabolic trough solar collector. Applied Thermal Engineering 2020;115827. doi: 10.1016/j.applthermaleng.2020.115827.
  • [10] Bellos, E., Tzivanidis C. and Antonopoulos K.A. A detailed working fluid investigation for solar parabolic trough collectors. Applied Thermal Engineering 2017;114;374-386. doi: 10.1016/j.applthermaleng.2016.11.201.
  • [11] Sun J., Wang R., Hong H. and Liu Q. An optimized tracking strategy for small-scale double-axis parabolic trough collector. Applied Thermal Engineering 2017;112;1408-1420. doi: 10.1016/j.applthermaleng.2016.10.187.
  • [12] Thomas, A. and Guven, H. M. Parabolic trough concentrators—design, construction and evaluation. Energy Conversion and Management 1993;34(5);401-416. doi: 10.1016/0196-8904(93)90090-W.
  • [13] Kasaeian A., Daviran S. and Azarian R.D. Optical and thermal investigation of selective coatings for solar absorber tube. International Journal of Renewable Energy Research (IJRER) 2016;6(1);15-20.
  • [14] Mwesigye A. and Huan Z. Thermodynamic analysis and optimization of fully developed turbulent forced convection in a circular tube with water–Al2O3 nanofluid. International Journal of Heat and Mass Transfer 2015;89;694-706. doi: 10.1016/j.ijheatmasstransfer.2015.05.099.
  • [15] Hussein A.K. Applications of nanotechnology in renewable energies-A comprehensive overview and understanding. Renewable and Sustainable Energy Reviews 2015;42;460-476. doi: 10.1016/j.rser.2014.10.027.
  • [16] Hussein A.K., Walunj A. and Kolsi L. Applications of nanotechnology to enhance the performance of the direct absorption solar collectors. Journal of Thermal Engineering 2016;2(1);529-540. doi:10.18186/jte.46009.
  • [17] Hussein, A.K. Applications of nanotechnology to improve the performance of solar collectors – Recent advances and overview. Renewable and Sustainable Energy Reviews 2016;62;767-792. doi: 10.1016/j.rser.2016.04.050.
  • [18] Hussein A.K., Li D., Kolsi L., Kata S. and Sahoo B. A review of nano fluid role to improve the performance of the heat pipe solar collectors. Energy Procedia 2017;109;417-424. doi: 10.1016/j.egypro.2017.03.044.
  • [19] Ghiasi, E. K. and Saleh R. Thermophysical Investigation of Unsteady Casson–Carreau Fluid. INAE Letters 2019;4(4);227-239. ‏ doi: 10.1007/s41403-019-00082-w.
  • [20] Khoshrouye Ghiasi E. and Saleh R. A Series Solution for Melting Heat Transfer Characteristics of Hybrid Casson Fluid Under Thermal Radiation. Eng. Appl. Sci. Lett 2019;2(4);21-32. doi:10.30538/psrp-easl2019.0028.
  • [21] Li D., Li Z., Zheng Y., Liu C., Hussein A.K. and Liu X. Thermal performance of a PCM-filled double-glazing unit with different thermophysical parameters of PCM. Solar Energy 2016;133;207–220. doi: 10.1016/j.solener.2016.03.039.
  • [22] Liu C., Wu Y., Li D., Ma T., Hussein A.K. and Zhou Y. Investigation of thermal and optical performance of a phase change material filled double-glazing unit. Journal of Building Physics 2018;42(2);99-119. doi: 10.1177/1744259117708734.
  • [23] Noorbakhsh M., Zaboli M. and Ajarostaghi S.S.M. Numerical evaluation of the effect of using twisted tapes as turbulator with various geometries in both sides of a double-pipe heat exchanger. Journal of Thermal Analysis and Calorimetry 2020;140(3);1341-1353.‏ doi: 10.1007/s10973-019-08509-w.
  • [24] Baou M., Afsharpanah F. and Delavar M.A. Numerical study of enhancing vehicle radiator performance using different porous fin configurations and materials. Heat Transfer-Asian Research 2020;49(1);502-518.‏ doi: 10.1002/htj.21624.
  • [25] Gong X., Wang F., Wang H., Tan J., Lai Q. and Han H. Heat transfer enhancement analysis of tube receiver for parabolic trough solar collector with pin fin arrays inserting. Solar Energy 2017;144;185-202.‏ doi: 10.1016/j.solener.2017.01.020.
  • [26] Heyhat M.M., Valizade M., Abdolahzade S. and Maerefat M. Thermal efficiency enhancement of direct absorption parabolic trough solar collector (DAPTSC) by using nanofluid and metal foam. Energy 2020;192; 116662.‏ doi: 10.1016/j.energy.2019.116662.
  • [27] Baragh S., Shokouhmand H., Ajarostaghi S.S.M. and Nikian M. An experimental investigation on forced convection heat transfer of single-phase flow in a channel with different arrangements of porous media. International Journal of Thermal Sciences 2018;134;370-379.‏ doi: 10.1016/j.ijthermalsci.2018.04.030.
  • [28] Baragh S., Shokouhmand H. and Ajarostaghi, S.S.M. Experiments on mist flow and heat transfer in a tube fitted with porous media. International Journal of Thermal Sciences 2019;137;388-398.‏ doi: 10.1016/j.ijthermalsci.2018.11.030.
  • [29] Ajarostaghi S.S.M., Delavar M.A. and Poncet S. Thermal mixing, cooling and entropy generation in a micromixer with a porous zone by the lattice Boltzmann method. Journal of Thermal Analysis and Calorimetry 2020;140(3);1321-1339.‏ doi: 10.1007/s10973-019-08386-3.
  • [30] De los Rios M.S.B., Rivera-Solorio C.I. and García-Cuéllar A.J. Thermal performance of a parabolic trough linear collector using Al2O3/H2O nanofluids. Renewable Energy 2018;122;665-673. doi: 10.1016/j.renene.2018.01.094.
  • [31] Karouei S.H.H., Ajarostaghi S.S.M., Gorji-Bandpy, M. and Fard S.R.H. Laminar heat transfer and fluid flow of two various hybrid nanofluids in a helical double-pipe heat exchanger equipped with an innovative curved conical turbulator. Journal of Thermal Analysis and Calorimetry 2020;1-12.‏ doi: 10.1007/s10973-020-09425-0.
  • [32] Hamedani F.A., Ajarostaghi S.S.M. and Hosseini S.A. Numerical evaluation of the effect of geometrical and operational parameters on thermal performance of nanofluid flow in convergent–divergent tube. Journal of Thermal Analysis and Calorimetry 2019;1-23.‏ doi: 10.1007/s10973-019-08765-w.
  • [33] Zaboli M., Ajarostaghi S.S.M., Noorbakhsh M. and Delavar M.A. Effects of geometrical and operational parameters on heat transfer and fluid flow of three various water based nanofluids in a shell and coil tube heat exchanger. SN Applied Sciences 2019;1(11);1387.‏ doi: 10.1007/s42452-019-1431-2.
  • [34] Ajarostaghi S.S.M., Zaboli M. and Nourbakhsh M. Numerical evaluation of turbulence heat transfer and fluid flow of hybrid nanofluids in a pipe with innovative vortex generator. Journal of Thermal Analysis and Calorimetry 2020;1-15.‏ doi: 10.1007/s10973-020-10205-z.
  • [35] Outokesh M., Ajarostaghi S.S.M., Bozorgzadeh A. and Sedighi K. Numerical evaluation of the effect of utilizing twisted tape with curved profile as a turbulator on heat transfer enhancement in a pipe. Journal of Thermal Analysis and Calorimetry 2020;1-17.‏ doi: 10.1007/s10973-020-09336-0.
  • [36] Moghadam H.K., Ajarostaghi S.S.M. and Poncet S. Extensive numerical analysis of the thermal performance of a corrugated tube with coiled wire. Journal of Thermal Analysis and Calorimetry 2019;1-13.‏ doi: 10.1007/s10973-019-08876-4.
  • [37] Afsharpanah F., Pakzad K., Amirsoleymani M. and Delavar M.A. Numerical study of heat transfer enhancement using perforated dual twisted tape inserts in converging‐diverging tubes. Heat Transfer—Asian Research 2018;47(5);754-767.‏ doi: 10.1002/htj.21340.
  • [38] Saysroy A. and Eiamsa-ard S. Periodically fully-developed heat and fluid flow behaviors in a turbulent tube flow with square-cut twisted tape inserts. Applied Thermal Engineering 2017;112;895-910.‏ doi: 10.1016/j.applthermaleng.2016.10.154.
  • [39] Eiamsa-Ard S., Thianpong C., Eiamsa-Ard P. and Promvonge P. Convective heat transfer in a circular tube with short-length twisted tape insert. International communications in heat and mass transfer 2009;36(4);365-371.‏ doi: 10.1016/j.icheatmasstransfer.2009.01.006.
  • [40] Zaboli M., Nourbakhsh M. and Ajarostaghi S.S.M. Numerical evaluation of the heat transfer and luid low in a corrugated coil tube with lobe-shaped cross-section and two types of spiral twisted tape as swirl generator. Journal of Thermal Analysis and Calorimetry 2020. doi:10.1007/s10973-020-10219-7.
  • [41] Salman S.D., Kadhum A.A.H., Takriff M.S. and Mohamad A.B. CFD simulation of heat transfer augmentation in a circular tube fitted with alternative axis twisted tape in laminar flow under a constant heat flux. Heat Transfer—Asian Research 2014;43(4);384-396.‏ doi: 10.1002/htj.21089.
  • [42] Chang S.W., Yang T.L. and Liou J.S. Heat transfer and pressure drop in tube with broken twisted tape insert. Experimental Thermal and Fluid Science 2007;32(2;489-501. doi: 10.1016/j.expthermflusci.2007.06.002.
  • [43] Eiamsa-Ard S. and Promvonge P. Thermal characteristics in round tube fitted with serrated twisted tape. Applied Thermal Engineering 2010;30(13);1673-1682. doi: 10.1016/j.applthermaleng.2010.03.026.
  • [44] Afsharpanah F., Ajarostaghi S.S.M. and Sedighi K. The influence of geometrical parameters on the ice formation enhancement in a shell and double coil ice storage system. SN Applied Sciences 2019;1(10);1264.‏ doi: 10.1007/s42452-019-1317-3.
  • [45] Pakzad K., Ajarostaghi S.S.M. and Sedighi K. Numerical simulation of solidification process in an ice-on-coil ice storage system with serpentine tubes. SN Applied Sciences 2019;1(10);1258.‏ doi: 10.1007/s42452-019-1316-4.
  • [46] Ajarostaghi S.S.M., Poncet S., Sedighi K. and Delavar M.A. Numerical modeling of the melting process in a shell and coil tube ice storage system for air-conditioning application. Applied Sciences 2019;9(13);2726.‏ doi: 10.3390/app9132726.
  • [47] Ajarostaghi S.S.M., Sedighi K., Delavar M.A. and Poncet S. Numerical Study of a Horizontal and Vertical Shell and Tube Ice Storage Systems Considering Three Types of Tube. Applied Sciences 2020;10(3);1059.‏ doi: 10.3390/app10031059.
  • [48] Javadi H., Ajarostaghi S.S.M., Pourfallah M. and Zaboli M. Performance analysis of helical ground heat exchangers with different configurations. Applied Thermal Engineering 2019;154;24-36.‏ doi: 10.1016/j.applthermaleng.2019.03.021.
  • [49] Javadi H., Ajarostaghi S.S.M., Mousavi S.S. and Pourfallah M. Thermal analysis of a triple helix ground heat exchanger using numerical simulation and multiple linear regression. Geothermics 2019;81;53-73.‏ doi: 10.1016/j.geothermics.2019.04.005.
  • [50] Tokgoz N., Alıç E., Kaşka Ö. and Aksoy M.M. The numerical study of heat transfer enhancement using Al2O3-water nanofluid in corrugated duct application. Journal of Thermal Engineering 2018;4(3);1984-1997. doi:10.18186/journal-of-thermal-engineering.409655.
  • [51] Sharma B. Effect of flow structure on heat transfer in compact heat exchanger by using finite thickness winglet at acute angle. Journal of Thermal Engineering 2017;3(2);1149-1162. doi: 10.18186/thermal.298616.
  • [52] Keklikcioglu O., Dagdevir T. and Ozceyhan V. A CFD Based Thermo-Hydroulic Performance Analysis in a Tube Fitted with Stepped Conical Nozzle Turbulators. Journal of Thermal Engineering 2016;2;913-920. doi: 10.18186/jte.76922.
  • [53] Yakhot V. and Orszag S.A. Renormalization group analysis of turbulence. I. Basic theory. Journal of scientific computing 1986;1(1);3-51.‏ doi: 10.1007/BF01061452.
  • [54] Shirzad M., Ajarostaghi S.S.M., Delavar M.A. and Sedighi K. Improve the thermal performance of the pillow plate heat exchanger by using nanofluid: numerical simulation. Advanced Powder Technology 2019;30(7); 1356-1365.‏ doi: 10.1016/j.apt.2019.04.011.
  • [55] Shirzad M., Delavar M.A., Ajarostaghi S.S.M. and Sedighi K. Evaluation the effects of geometrical parameters on the performance of pillow plate heat exchanger. Chemical Engineering Research and Design 2019;150;74-83.‏ doi: 10.1016/j.cherd.2019.06.032.
  • [56] Noorbakhsh M., Pourfallah M., Ajarostaghi S.S.M. and Zaboli M. Numerical evaluation and the effects of geometrical and operational parameters on thermal performance of the shell and double coil tube heat exchanger. Heat Transfer 2020. doi:10.1002/htj.21847.
  • [57] Ajarostaghi S.S.M., Shirzad M., Rashidi S. and Li L.K. Heat transfer performance of a nanofluid-filled tube with wall corrugations and center-cleared twisted-tape inserts. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2020;1-21.‏ doi: 10.1080/15567036.2020.1841860.
  • [58] Olfian H., Zabihi Sheshpoli A. and Ajarostaghi S.S.M. Numerical evaluation of the thermal performance of a solar air heater equipped with two different types of baffles. Heat Transfer 2020;49(3);1149-1169.‏ doi: 10.1002/htj.21656.
  • [59] Hashemi Karouei S.H. and Ajarostaghi S.S.M. Influence of a curved conical turbulator on heat transfer augmentation in a helical double‐pipe heat exchanger. Heat Transfer 2020.‏ doi: 10.1002/htj.21960.
  • [60] Bergman, T.L., et al., Fundamentals of heat and mass transfer. 2011: John Wiley & Sons.
  • [61] Eiamsa-Ard S., Thianpong C. and Eiamsa-Ard P. Turbulent heat transfer enhancement by counter/co-swirling flow in a tube fitted with twin twisted tapes. Experimental Thermal and Fluid Science 2010;34(1);53-62.‏ doi: 10.1016/j.expthermflusci.2009.09.002.