MULTIFLUID DESCRIPTI ON OF RAREFIED GAS M IXTURE FLOWS

MULTIFLUID DESCRIPTI ON OF RAREFIED GAS M IXTURE FLOWS

In the present contribution attention is focused to extendthe application of multifluid descriptions torarefied conditions for the first time . To this aim, a multifluid Maxwell model and a multifluid Smoluchowski modelare proposed for near wall behavior of the constituents of a rarefied gas mixture. Afterwards, multifluid balanceequations in conjunction with these boundary conditions are solved for some slip flows of binary gas mixturesbetween parallel plates T he co rresponding results are compared with those of a previously developed Navier Stokessolver. Inspection of the results indicates that while the Navier Stokes equations may lose their accuracy under highrarefaction, non equilibrium features are properly cap tured by developed multifluid description. This successfulmethod is thereafter utilized to discuss the consequences of velocity slip, the tangential momentum accommodationcoefficient, and mass disparity of the mixture constituents on the degree of non eq uilibrium between the constituentsof the gas mixture s between parallel plates.

___

  • [1] Goli A, Zahmatkesh I. Slip f low in p orous m icro t ubes under l ocal t hermal n on e quilibrium c onditions. Transp Phenom Nano Micro Scales 2018; 6 79 87. doi: 10.22111/TPNMS.2018.4034
  • [2 ] Yan F, Farouk B. Numerical simulation of gas flow and mixing in a microchannel using the direct simulation Monte Carlo method. Microscale Thermophys Eng 2002; 6 235 251. doi: 10.1080/10893950290098296
  • [3 ] Wang M, Li Z. Gas mixing in microchannels using the direct simulation Monte Carlo method. Int J Heat Mass Transf 2006; 49 1696 1702. doi: 10.1016/j.ijheatmasstransfer.2005.10.022
  • [4 ] Hosseinalipour SM, Jabbari E, Madadelahi M, Fardad A. Gas mixing simulatio n in a T Shape micro channel using the DSMC method. Transp Phenom Nano Micro Scales 2014; 2 132 139. doi: 10.7508/TPNMS.2014.02.005
  • [5 ] Amini Y, Emdad H, Akramian K, Bordbar F. Investigation of th e common nose cone shapes in different gas mixtures in high Knudsen numbers. Scientia Iranica B 2012; 19 1511 1518. doi: 10.1016/j.s cient.2012.10.029
  • [6 ] Vargas M, Stefanov S, Roussinov V. Transient heat transfer flow through a binary gaseous mixture confined between coaxial cylinders. Int J Heat Mass Transf 2013;59: 302 315. doi: 10.1016/j.ijheatmasstransfer.2012.12.025
  • [7 ] Naris S, Valougeorgis D, Kalempa D, Sharipov F. Gaseous mixture flow between two parallel plates in the whole range of the gas r arefaction. Physica A 2004;336: 294 311. doi: 10.1016/j.physa.2003.12.047
  • [8 ] Kosuge S, Takata S. Database for flows of binary gas mixtures through a plane microchannel. Eur J Mech B Fluids 2008; 27 444 465. doi: 10.1016/j.euromechflu.2007.08.002
  • [9 ] Naris S, Valougeorgis D, Kalempa D, Sharipov F. Flow of gaseous mixtures through rectangular microchannels driven by pressure, temperature, and concentration gradients. Phys Fluids 2005; 17 :100607. doi: 10.1063/1.1896986
  • [10 ] McCormack FJ. Construction of linearized kinetic models for gaseous mixtures and molecular gases. Phys Fluids 1973; 16 2095 2105. doi: 10.1063/1.1694272.
  • [11 ] Szalmas L, Valougeorgis D. R arefied gas flow of binary mixtures through long channels with triangular and trapezoidal cross sections. Microfluid Nanofluid 2010; 9 471 487. doi 10.1007/s10404 010 0564 9.
  • [12 ] Polikardiv AP, Ho MT, Graur I. Transient heat transfer in a rarefied binary gas mixture confined between parallel plates due to a sudden small change of wall temperatures Int J Heat Mass Transf 2016; 101 1292 1303. doi: 10.1016/j.ijheatmasstransfer.2016.05.124
  • [13 ] Ho MT, Wu L, Graur I, Zhang Y, Reese JM. Comparative study of the Boltzmann and McCormack equations for Couette and Fourier flows of binary gaseous mixtures. Int J Heat Mass Transf 2016; 96 29 41. doi: 10.1016/j.ijheatmasstransfer.2015.12.068
  • [14 ] Tantos C , V alougeorgis D. Conductive heat transfer in rarefied binary gas mixtures confined between parallel plates based on kinetic modeling. Int J Heat Mass Transf 2018; 117 846 860. doi: j.i jheatmasstransfer.2017.10.050
  • [15 ] Kosuge S. Model Boltzmann equation for gas mixtures: Construction and numerical comparison. Eur J Mech B Fluids 2009; 28 170 184. doi: 10.1016/j.euromechflu.2008.05.001
  • [16 ] Tantos C . Steady planar Couette flow of rarefied binary gaseous mixture based on kinetic modeling Eur J Mech B Fluids 2019; 76 375 389 . doi 10.1016/j.euromechflu.2019.04.005
  • [17 ] Yamaguchi H, Hosoi J, Matsuda Y, Niimi T. Measurement of conductive heat transfer through rarefied binary gas mixtures Vacuum 2019;160:164 170. doi: 10.1016/j.vacuum.2018.11.021
  • [18 ] Zahmatkesh I, Alishahi MM, Emdad H. New velocity slip and temperature jump boundary conditions fo r Navier Stokes computation of gas mixture flows in microgeometries. Mech Res Commun 2011; 38 417 424. doi: 10.1016/j.mechrescom .2011.06.001
  • [19 ] Zahmatkesh I, Emdad H, Alishahi MM. Navier Stokes computation of some gas mixture problems in the slip flow regime. Scientia Iranica B 2015; 22 187 195.
  • [2 0] Crouzet F, Daude F, Galon P, Hérard JM, Hurisse O, Liu Y. Validation of a two f luid model on unsteady water vapour flows. Comput Fluids 2015;119:131 142. doi: 10.1016/j.compfluid.2015.06.035
  • [21 ] Torshizi E, Zahmatkesh I. Comparison between single phase, two phase mixture and Eulerian Eulerian models for the description of jet impingement of nanofluids. J Appl Comput Sci Mech 2016;27:55 70. doi: 1 0.22067/fum_mech.v27i2.41797
  • [22 ] Zahmatkesh I, Torshizi E. Scrutiny of unsteady flow and heat transfer in a backward facing step under pulsating nanofluid blowing using the Eulerian Eulerian approach. J Mech 2019;35:93 105. doi: 10.1017/jmech.2017.73
  • [23] Fox RO. A kinetic based hyperbolic two fluid model for binary hard sphere mixtures. J Fluid Mech 2019;877:282 329. doi: 10.1017/jfm.2019.60 8.
  • [24] Shin HC, Seo HS, Kim SM. Two dimensional two fluid model for air oil wavy flow in hori zontal tube. J Mech Sci Technol 2019;33:2693 2709. doi: 10.1007/s12206 019 0517 5
  • [25 ] Zahmatkesh I, Emdad H, Alishahi MM. Importance of molecular interaction description on the hydrodynamics of gas mixtures. Scientia Iranica B 2011; 18 1287 1296. doi: 10.1016/j.scient.2011.08.032
  • [26 ] Zahmatkesh I, Emdad H, Alishahi MM. Two fluid analysis of a gas mixing problem. Scientia Iranica B 2013; 20 162 171. doi: 10.1016/j.scient.2012.12.017
  • [2 7 ] Zahmatkesh I, Emdad H, Alishahi MM. Viscous and inviscid solutions of some gas mixture problems. Heat Transf Res 2011; 42 233 250. doi: 10.1615/HeatTransRes.2011002769
  • [28 ] Zahmatkesh I, Emdad H, Alishahi MM. Effect of temperature level on parallel mixing of two gas streams. Mech Res Commun 2011; 38 141 145. doi: 10.1016/j.mechrescom.2011.01.004
  • [29 ] Maxwell JC. On stresses in rarefied gases arising from inequalities of temperature. Philos Tran s R Soc Lo ndon Ser B 1879 170 :231 256. doi: 10.1098/rstl.1879.0067
  • [30 ] Smoluchowski M. On conduction of heat by rarefied gases (Ueber warmeleitung in verdunnten gasen). Ann Phys Chem 1898 64 101 130. doi: 10.1002/andp.18983000110
  • [31 ] Roe PL . Discrete models for numerical analysis of time dependent multidimensional gas dynamics. J Comput Phys 1986 63 458 476. doi: 10.1016/0021 9991(86)90204 4