Energy, economic and environmental analysis and comparison of the novel Oxy- combustion power systems

Energy, economic and environmental analysis and comparison of the novel Oxy- combustion power systems

Oxy-combustion technologies are clean energy systems with zero emission; they have great potential when considering global warming and climate change. This study presents a detailed thermodynamic analysis in terms of energy, environment, and economy. Consequently, the results obtained for an oxy-combustion power system are presented in comparison with a conventional gas turbine power system. The results are presented as a function of the pressure ratio with regard to net power, input heat, system efficiency, sp ecific fue l consumption, equivalence ratio, fuel-air ratio, capital investment cost, fuel cost, oxygen cost, total cost, electricity revenue, and net profit. In addition, the study calculates the pollutant emissions from non-oxy-combustion systems and investigates the environmental costs. The pressure ratio for maximum net power has been obtained as 20.8 in the conventional gas turbine power system. Similarly, the pressure ratios for maximum net power in oxy-combustion power cycles with 26%, 28%, and 30% oxygen ratios are 23.3, 27.4 and 29.7, respectively. Results from 24% to 30% have been displayed to observe the effect of reactant oxygen in the oxy-combustion power cycles. The optimum c ycle c onditions have been determined by calculating the costs of system components, total revenues, and net profits at pressure ratios of 10, 20, 30 and 40. Finally, the results reveal the pressure ratio should be reduced to minimize the total costs per cycle. For maximum net profit, the pressure ratio in a conventional gas turbine power cycle has been calculated as 15.9; similarly, the pressure ratios in oxy-combustion power cycles with 26%, 28%, and 30% oxygen ratios have been respectively calculated as 12.8, 15.2 and 16.4.

___

  • The article references can be accessed from the .pdf file.
Journal of Thermal Engineering-Cover
  • Başlangıç: 2015
  • Yayıncı: YILDIZ TEKNİK ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Experimental study of heat transfer in a helical coiled tube biomass fired rotary device

Prashant DESHMUKH, Satyajit KASAR, Niteen SAPKAL

Modeling of parabolic collector (a new approach of concentration ratio calculation)

Tahseen Ali JABBAR, Raed S. BATBOOTI, Bassam A. MOHAMMED

An experimental study on resuspension, thermostability and migration phenomenon of nanoparticles in pool boiling

R.praveen BHARATHWAJ, M. B. VARUN PRADEEP, P. PADMANATHAN, A. SATHEESH, N. R. DEVI

Numerical investigation of heat transfer & hall effects on MHD nanofluid flow past over an oscillating plate with radiation

S SARALA, E. GEETHA, M. NIRMALA

Experimental investigation and validation of solar PV cooling for enhanced energy conversion efficiency for Indian climatic conditions

Pritam BHAT, Ananth S. IYENGAR, Abhilash N, Pavan KUMAR REDDY

Thermo-economic feasibility analysis of trilateral-cycle power generators for waste heat recovery-to-power applications

Habeeb A. AJIMOTOKAN, Isiaka AYUBA, Hassan K. IBRAHIM

Heat transfer enhancement for corrugated facing step channels using aluminium nitride nanofluid - numerical investigation

Kafel AZEEZ, Abd Rahim ABU TALIB, Riyadh IBRAHEEM AHMED3

Numerical investigation of 3D unsteady flow around a rotor of vertical axis wind turbine darrieus type H

Amar BERKACHE, Abdellah BOUMEHANI, Belkhir NOURA, Rabah KERFAH

Energy, economic and environmental analysis and comparison of the novel Oxy- combustion power systems

Ibrahim OZSARI, Yasin UST