Centrifugal deposition of iron oxide magnetic nanorods for hyperthermia application

Anahtar Kelimeler:

-

Centrifugal deposition of iron oxide magnetic nanorods for hyperthermia application

Centrifugal deposition of iron oxide was performed to manufacture magnetic nanorods in an aqueous solution. The nanorods were examined by electron microscopy. The diameter of the nanorods ranges from 10 to 20 nm. The length is about 150 nm. The nanorods were incorporated into a silicone polymer to simulate body tissues injected with magnetic nanomaterials. Then the magnetic nanorod-containing silicone samples were put into a microwave to examine the external electromagnetic field induced heating behavior. Dramatic increase in temperature was observed when the nanorods were exposed to the external electromagnetic field for 2 seconds. It is concluded that the nanorods generate intensive heating effect and they have the potential for hyperthermia application

___

  • T.B. Mîndru, L. Ignat, I.B. Mîndru, M. Pinteala, Morphological aspects of polymer fiber mats obtained by air flow rotary-jet spinning, Fiber Polym. 14 (2013) 1526-1534.
  • I C. Ni, S.C. Yang, C.W. Jiang, C.S. Luo, W. Kuo, K.J. Lin, S.D. Tzeng, Formation mechanism, patterning, and physical properties of gold-nanoparticle films assembled by an interaction-controlled centrifugal method, J. Phys. Chem. C 116 (2012) 8095−8101.
  • J.H. Chang, C.R. Aleman de Leon, I.W. Hunter, Self- assembled, nanostructured polypyrrole films grown in a high- gravity environment, Langmuir 28 (2012) 4805-4810.
  • J.A. McCormick, B.L. Cloutier, A.W. Weimer, S.M. George, Rotary reactor for atomic layer deposition on large quantities of nanoparticles, J. Vac. Sci. Technol. A 25 (2007) 67- 74.
  • P. Maingon, É. Nouhaud, F. Mornex, G. Créhange, Stereotactic body radiation therapy for liver tumours, Cancer/Radiothérapie, 18 (2014) 313-319.
  • T. A. Greenhalgh, R. P. Symonds, Principles of chemotherapy and radiotherapy, Obstetrics, Gynaecology & Reproductive Medicine, 24 (2014) 259-265.
  • R. D. Corato, A. Espinosa, L. Lartigue, M. Tharaud, S. Chat, T. Pellegrino, C. Ménager, F. Gazeau, C. Wilhelm, Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs, Biomaterials, 35 (2014) 6400-6411.
  • E. Garaio, J.M. Collantes, J.A. Garcia, F. Plazaola, S. Mornet, F. Couillaud, O. Sandre, A wide-frequency range AC magnetometer to measure the specific absorption rate in nanoparticles for magnetic hyperthermia, Journal of Magnetism and Magnetic Materials, 368 (2014) 432-437.
  • M.E. Sadat, R. Patel, S.L. Bud'ko, R.C. Ewing, J. Zhang, H. Xu, D.B. Mast, D. Shi, Dipole-interaction mediated hyperthermia heating mechanism of nanostructured Fe3O4 composites, Materials Letters 129(2014) 57–60
  • A.E. Deatsch, B.A. Evans, Heating efficiency in magnetic nanoparticle hyperthermia, Journal of Magnetism and Magnetic Materials 354(2014) 163–172 [11] C.S.S.R. Kumar, F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Advanced Drug Delivery Reviews 63 (2011) 789–808.
  • S. Laurent, S. Dutz, U.O. Häfeli, M. Mahmoudi , Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles, Advances in Colloid and Interface Science 166 (2011) 8–23.
  • M. Veverka, P. Veverka, Z. Jirák, O. Kaman, K. Knížek, M. Maryško, E. Pollert, K. Závěta, Synthesis and magnetic properties of Co1−xZnxFe2O4+y nanoparticles as materials for magnetic fluid hyperthermia, Journal of Magnetism and Magnetic Materials, 322 (2010) 2386-2389.
  • C.L. Tseng, K.C. Chang, M.C. Yeh, K.C. Yang, T.P. Tang, F.H. Lin, Development of a dual-functional Pt–Fe-HAP magnetic nanoparticles application for chemo-hyperthermia treatment of cancer, Ceramics International, 40 (2014) 5117- 5127.
  • A.E. Deatsch, B.A. Evans, Heating efficiency in magnetic nanoparticle hyperthermia, J. Magnetism Magnetic Mater. 354 (2014) 163-172.
  • H.S. Huang, J.F. Hainfeld, Intravenous magnetic nanoparticle cancer hyperthermia, Int. J. Nanomedicine, 8 (2013) 2521-2532.
  • T.C. Lin, F.H. Lin, J.C. Lin, In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells, Acta Biomater. 8 (2012) 2704-2711.
  • F. Yang, C. Jin, S. Subedi, C.L. Lee, Q. Wang, Y. Jiang, J. Li, Y. Di, D. Fu, Emerging inorganic nanomaterials for pancreatic cancer diagnosis and treatment, Cancer Treatment Rev. 38 (2012) 566-579.
  • W. Rao, W. Zhang, I. Poventud-Fuentes, Y. Wang, Y. Lei, P. Agarwal, B. Weekes, C. Li, X. Lu, J. Yu, X. He, Thermally responsive nanoparticle-encapsulated curcumin and its combination with mild hyperthermia for enhanced cancer cell destruction, Acta Biomater. 10 (2014) 831-842.
  • T. Sadhukha, T.S. Wiedmann, J. Panyam, Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy, Biomaterials 34 (2013) 5163-5171.
  • M. Bañobre-López, A. Teijeiro, J. Rivas, Magnetic nanoparticle-based hyperthermia for cancer treatment, Reports of Practical Oncology & Radiotherapy, 18 (2013) 397-400. [22] C.S.S.R. Kumar, F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Adv. Drug Delivery Rev. 63 (2011) 789-808.
  • G. Vallejo-Fernandez, O. Whear, A. G Roca, S. Hussain, J. Timmis, V. Patel, K. O'Grady, Mechanisms of hyperthermia in magnetic nanoparticles, J. Phys. D: Appl. Phys. 46 (2013) 312001.