A closed form solution for ac electo-kinetic-driven flow in a microchannel

Anahtar Kelimeler:

-

A closed form solution for ac electo-kinetic-driven flow in a microchannel

The electro-osmotic fully-developed flow in a circular microchannel was studied under an alternative electric field. An analytical approach based on the linearized poisson-Boltzmann equation was selected to obtain an exact solution of the electrical potential inside the channel. The velocity distribution was then determined by using Green’s function approach. The velocity distribution has been plotted under a design condition

___

  • F. Reuss, Sur un nouvel effect de l’electricte galvanique. Memoires de la Societe Imperiale de Naturalistes de Moscou, 2 (1809) 327-337.
  • Wiedemann, G. Pogg. Ann. 1852, 87, 321.
  • H. Helmholtz, Uber den einfluß der elektrischen grenzschichten bei galvanischer spannung und der durch wasserstromung erzeugten potentialdifferenz, Ann. 7 (1879) 337.
  • M. von Smoluchowski, Versuch einer mathematischen theorie der kogulationskinetic kolloid losunaen, Z. Phys. Chem. 92 (1917) 129–35.
  • D. Burgreen and F.R. Nakache, Electrokinetic flow in ultrafine capillary slits. J. Phys. Chem. 68 (1964) 1084– 1091.
  • C.L. Rice and R. Whitehead, Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 69 (1964) 4017–4024.
  • J.T.G. Overbeek, Phenomenology of lyophobic systems. In: Kruyt HR (ed) Colloid science, vol 1. Elsevier, Amsterdam, pp 58–59, 1952. [8] E.B. Cummings, S.K. Griffiths, R.H. Nilson, Irrotationality of uniform electro-osmosis, Proc SPIE Microfluidic Devices Syst II:180–189, 1999.
  • S. Kandlikar, S. Garimella, D. Li, S. Colin, M.R. King, Heat Transfer and Fluid Flow in Minichannels and Microchannels, Elsevier, 2006.
  • A. Ajdari, Electroosmosis on inhomogeneously charged surfaces, Phys. Rev. Lett. 75 (1995) 755–758.
  • D. Erickson, D. Li, Analysis of AC electroosmotic flows in a rectangular microchannel, Langmuir 19 (2003) 5421– 543.
  • A. Gonzalez, A. Ramos, N.G. Green, A. Castellanos, H. Morgan, Fluid flow induced by non-uniform AC electric fields in electrolytes on microelectrodes II: a linear double layer analysis, Phys. Rev. E 61 (2000) 4019–4028.
  • A.B.D. Brown, C.G. Smith, A.R. Rennie, Pumping of water with an AC electric field applied to asymmetric pairs of microelectrodes, Phys. Rev. E 63 (2002) 016305 1–8.
  • P. Tabeling, Introduction to Microfluidics, Oxford University Press, 2005.
  • R. Haberman, Elementary Applied Partial Differential Equations, Prentice Hall, 987.
  • B. Kundu, K.-S. Lee, Thermal design of an orthotropic flat fin in fin-and-tube heat exchanger operating in dry and wet environments, International Journal of Heat and Mass Transfer 54 (2011), Nos. 25-26, 5207–5215.
  • B. Kundu, Performance and optimization of flat plate fins of different geometry on a round tube: A comparative investigation, Journal of Heat Transfer–Transactions of ASME 129 (7) (2007) 917–926.
  • B. Kundu, P.K. Das, Performance analysis and optimization of elliptic fins circumscribing a circular tube, International Journal of Heat and Mass Transfer 50 (1-2) (2007) 173–180.
  • B. Kundu, P.K. Das, Performance analysis of eccentric annular fins with a variable base temperature, Numerical Heat Transfer Part A-applications 36 (7) (1999) 751–766.
  • B. Kundu, P.K. Das, Performance analysis and optimization of eccentric annular disc fins, Journal of Heat Transfer–Transactions of ASME 105 (1) (1999) 128–135.
  • B. Kundu, P.K. Das, Optimum dimensions of plate fins for fin tube heat exchangers, International Journal of Heat and Fluid Flow 18 (5) (1997) 530