A comprehensive review to study and implement solar energy in dairy industries

In this review, analysis of triple-impact vapour ingestion refrigeration framework involving a high, medium and low-temperature generator is characterized. This review suggests the solar power-related triple impact vapour retention refrigeration for heating and cooling applications in dairy industries that should be developed. In this review, the paper investigates solar heat and cooling is practised in modern dairy applications. With improved advancements and scaled-down costs, the solar-powered energy guarantees to reduce power charges builds countries’ energy security through reliance on a special, unfathomable resource, redesigned practicality, limited defilement, cut down the costs of diminishing an unsafe barometrical deviation, and keeps oil subordinate costs lower than something different. The important source of heating is considered from solar-based by using different solar oriented heat advancements. The results indicate that solar power-related triple impact vapour retention refrigeration for heating and cooling applications in dairy industries. Different operating temperatures are measured during the implementation and find an optimal food processing condition in the dairy industry. Thus, this observed study gives hands to develop an efficient renewable system for processing industrial dairy operation using solar power. Implementing renewable energy sources in the dairy industries promotes overall energy consumption and lower the total expenditure of industrial processing, respectively.

___

  • [1] Timilsina, G. R., Kurdgelashvili, L., Narbel, P. A. Solar energy: Markets, economics and policies. Renewable and Sustainable Energy Reviews 2012; 16(1): 449-465. https://doi.org/10.1016/j.rser.2011.08.009
  • [2] Panwar, N. L., Kaushik, S. C., Kothari, S. Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews (2011); 15(3): 1513-1524. https://doi.org/10.1016/j.rser.2010.11.037
  • [3] Mekhilef, S., Saidur, R., Safari, A. A review on solar energy use in industries. Renewable and sustainable energy reviews. 2011; 15(4): 1777-1790. https://doi.org/10.1016/j.rser.2010.12.018
  • [4] Samimi, A., Zarinabadi, S., Samimi, M. Solar Energy Application on Environmental Protection. International Journal of Science and Investigations 2012; 21-24.
  • [5] Aniket, D., Bari, A., Dwivedi, G. Scope and application of solar thermal energy in India: a review. International Journal Engineering 2013; 6(3): 315-322.
  • [6] Devabhaktuni, V., Alam, M., Depuru, S. S. S. R., Green II, R. C., Nims, D., Near, C. Solar energy: Trends and enabling technologies. Renewable and Sustainable Energy Reviews 2013; 19: 555-564. https://doi.org/10.1016/j.rser.2012.11.024
  • [7] Chopde, S. S., Sambharao Chopde, S., Patil, M. R., Shaikh, A. Solar technology: A way to the prosperity of Indian dairy industry. Indian Journal of Dairy Science 2016; 69(4): 375-81. DOI:10.5146/ijds.v69i4.57280.g24901
  • [8] Mathiesen, B. V., Lund, H., & Karlsson, K. 100% Renewable energy systems, climate mitigation and economic growth. Applied Energy 2011; 88(2): 488-501. https://doi.org/10.1016/j.apenergy.2010.03.001
  • [9] Apergis, N., Payne, J. E. Renewable energy consumption and economic growth: evidence from a panel of OECD countries. Energy Policy 2010; 38(1): 656-660. https://doi.org/10.1016/j.enpol.2009.09.002
  • [10] Akella, A. K., Saini, R. P., Sharma, M. P. Social, economical and environmental impacts of renewable energy systems. Renewable Energy 2009; 34(2): 390-396. DOI:10.1016/j.renene.2008.05.002
  • [11] Farshad, S. A., Sheikholeslami, M. FVM modeling of nanofluid forced convection through a solar unit involving MCTT. International Journal of Mechanical Sciences. 2019; 159: 126-139. https://doi.org/10.1016/j.ijmecsci.2019.05.031
  • [12] Hoseinzadeh, S., Hadi Zakeri, M., Shirkhani, A., Chamkha, A. J. Analysis of energy consumption improvements of a zero-energy building in a humid mountainous area. Journal of Renewable and Sustainable Energy 2019; 11(1): 015103. https://doi.org/10.1063/1.5046512
  • [13] Farshad, S. A., Sheikholeslami, M. Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis. Renewable Energy 2019; 141: 246-258. https://doi.org/10.1016/j.renene.2019.04.007
  • [14] Farshad, S. A., Sheikholeslami, M. Simulation of nanoparticles second law treatment inside a solar collector considering turbulent flow. Physica A: Statistical Mechanics and its Applications 2019; 525: 1-12. https://doi.org/10.1016/j.physa.2019.03.089
  • [15] Farshad, S. A., Sheikholeslami, M., Hosseini, S. H., Shafee, A., Li, Z. Nanofluid turbulent forced convection through a solar flat plate collector with Al 2 O 3 nanoparticles. Microsystem Technologies, 2019; 25(11): 4237-4247. https://doi.org/10.1007/s00542-019-04430-2
  • [16] Singh M., Kale, D. V., Chavan, B., Suvartan, R., Dhotre, A. V. A Review on Solar Water Heating System and its Use in Dairy Industry. Internation journal of Current Microbiology and Applied Science 2019; 8(4): 1975-1986. DOI:10.20546/ijcmas.2019.804.231
  • [17] Kasaeian, A. Comparison study of air and thermal oil application in a solar cavity receiver. Journal of Thermal Engineering 5(6), 221-229. https://doi.org/10.18186/thermal.654628
  • [18] Al-Gebory, L. Participating media for volumetric heat generation. Journal of Thermal Engineering 2019; 5(1): 93-99. https://doi.org/10.18186/thermal.505495
  • [19] Shikalgar, N. D., Sapali, S. N. Energy and exergy analysis of a domestic refrigerator: approaching a sustainable refrigerator. Journal of Thermal Engineering 2019; 5(5): 469-481. DOI: 10.18186/thermal.624159
  • [20] Ahmad, S., Ab Kadir, M. Z. A., Shafie, S. Current perspective of the renewable energy development in Malaysia. Renewable and sustainable energy reviews. 2011; 15(2): 897-904. https://doi.org/10.1016/j.rser.2010.11.009
  • [21] Prieto, A., Knaack, U., Auer, T., Klein, T. Solar façades-Main barriers for widespread façade integration of solar technologies. Journal of Facade Design and Engineering. 2017; 5(1), 51-62. https://doi.org/10.7480/jfde.2017.1.1398
  • [22] Usman, M., Ali, Q. S., Bilal, M. Assessment of the solar cooling technologies using analytical hierarchical process. World Journal of Engineering. 2017; https://doi.org/10.1108/WJE-11-2016-0135
  • [23] Farjana, S. H., Huda, N., Mahmud, M. P., Saidur, R. Solar process heat in industrial systems–A global review. Renewable and Sustainable Energy Reviews. 2018; 82: 2270-2286. https://doi.org/10.1016/j.rser.2017.08.065
  • [24] Durmuşoğlu, Y. Exergetic efficiency analysis of a combined power plant of a container ship. Journal of Thermal Engineering. 2019; 5(1): 1-13. https://doi.org/10.18186/thermal.467006
  • [25] de Lima, L. P., de Deus Ribeiro, G. B., Perez, R. The energy mix and energy efficiency analysis for Brazilian dairy industry. Journal of Cleaner Production. 2018; 181: 209-216. https://doi.org/10.1016/j.jclepro.2018.01.221
  • [26] Yadav, R. H., Jadhav, M. V., Chougule, M. G.. Exploring the scope of renewable energy technologies in dairy sector. International journal of engineering sciences & research technology. 2016; 5(7): 439-450. DOI: 10.5281/zenodo.57001
  • [27] Hoseinzadeh, S., Heyns, P. S., Kariman, H. Numerical investigation of heat transfer of laminar and turbulent pulsating Al2O3/water nanofluid flow. International Journal of Numerical Methods for Heat & Fluid Flow. 2019; https://doi.org/10.1108/HFF-06-2019-0485
  • [28] Prabhakar, P. K., Srivastav, P. P., Murari, K. Energy consumption during manufacturing of different dairy products in a commercial dairy plant: A case study. Asian Journal of Dairy and Food Research. 2015; 34(2): 98-103. 10.5958/0976-0563.2015.00020.2
  • [29] Hoseinzadeh, S., Azadi, R. Simulation and optimization of a solar-assisted heating and cooling system for a house in Northern of Iran. Journal of Renewable and Sustainable Energy. 2017; 9(4): 045101. https://doi.org/10.1063/1.5000288
  • [30] Yousef Nezhad, M. E., Hoseinzadeh, S. Mathematical modelling and simulation of a solar water heater for an aviculture unit using MATLAB/SIMULINK. Journal of Renewable and Sustainable Energy. 2017; 9(6): 063702. https://doi.org/10.1063/1.5010828
  • [31] Yildirim, C., Ozdil, N. F. Theoretical investigation of a solar air heater roughened by ribs and grooves. J There Eng 2018; 5(1), 1702-1712. DOI: 10.18186/journal-of-thermal-engineering.365713
  • [32] Heidarnejad, P. Exergy Based Optimization of a Biomass and Solar Fuelled CCHP Hybrid Seawater Desalination Plant. J Ther Eng 2017; 3(1): 1034-1043. DOI: 10.18186/thermal.290251
  • [33] Brancato, V., Frazzica, A., Sapienza, A., Freni, A. Identification and characterization of promising phase change materials for solar cooling applications. Solar Energy Materials and Solar Cells 2017; 160: 225-232. https://doi.org/10.1016/j.solmat.2016.10.026
  • [34] Agrouaz, Y., Bouhal, T., Allouhi, A., Kousksou, T., Jamil, A., Zeraouli, Y. Energy and parametric analysis of solar absorption cooling systems in various Moroccan climates. Case Studies in Thermal Engineering 2017; 9: 28-39. https://doi.org/10.1016/j.csite.2016.11.002
  • [35] Palomba, V., Vasta, S., Freni, A., Pan, Q., Wang, R., Zhai, X. Increasing the share of renewables through adsorption solar cooling: A validated case study. Renewable Energy 2017; 110: 126-140. https://doi.org/10.1016/j.renene.2016.12.016
  • [36] Buonomano, A., Calise, F., d’Accadia, M. D., Ferruzzi, G., Frascogna, S., Palombo, A., Scarpellino, M. Experimental analysis and dynamic simulation of a novel high-temperature solar cooling system. Energy conversion and management. 2016; 109; 19-39. https://doi.org/10.1016/j.enconman.2015.11.047
  • [37] Khan, J., Arsalan, M. H. Solar power technologies for sustainable electricity generation–A review. Renewable and Sustainable Energy Reviews. 2016; 55: 414-425. https://doi.org/10.1016/j.rser.2015.10.135
  • [38] Aliane, A., Abboudi, S., Seladji, C., Guendouz, B. An illustrated review on solar absorption cooling experimental studies. Renewable and Sustainable Energy Reviews. 2016; 65: 443-458. https://doi.org/10.1016/j.rser.2016.07.012
  • [39] Rossetti, A., Paci, E., Alimonti, G. Experimental analysis of the performance of a medium temperature solar cooling plant. International Journal of Refrigeration. 2017; 80: 264-273. https://doi.org/10.1016/j.ijrefrig.2017.05.002
  • [40] Gabbrielli, R., Castrataro, P., Del Medico, F. Performance and economic comparison of solar cooling configurations. Energy Procedia. 2016; 91: 759-766. https://doi.org/10.1016/j.egypro.2016.06.241
  • [41] Dwivedi, A., Bari, A., Dwivedi, G. Scope and Application of Solar Thermal Energy in India-A Review. International Journal of Engineering Research and Technology. 2013; 6(3): 315-322.
  • [42] Mekhilef, S., Saidur, R., Safari, A. A review on solar energy use in industries. Renewable and sustainable energy reviews. 2011; 15(4): 1777-1790. https://doi.org/10.1016/j.rser.2010.12.018
  • [43] Colmenar-Santos, A., Bonilla-Gómez, J. L., Borge-Diez, D., Castro-Gil, M. (2015). Hybridization of concentrated solar power plants with biogas production systems as an alternative to premiums: The case of Spain. Renewable and Sustainable Energy Reviews. 2015; 47: 186-197. https://doi.org/10.1016/j.rser.2015.03.061
  • [44] Suresh, N. S., Rao, B. S. Solar energy for process heating: a case study of select Indian industries. Journal of Cleaner Production. 2017; 151: 439-451. https://doi.org/10.1016/j.jclepro.2017.02.190
  • [45] Allouhi, A., Agrouaz, Y., Amine, M. B., Rehman, S., Buker, M. S., Kousksou, T., Benbassou, A. Design optimization of a multi-temperature solar thermal heating system for an industrial process. Applied Energy. 2017; 206: 382-392. https://doi.org/10.1016/j.apenergy.2017.08.196
  • [46] Kylili, A., Fokaides, P. A., Ioannides, A., Kalogirou, S. Environmental assessment of solar thermal systems for the industrial sector. Journal of Cleaner Production. 2018; 176: 99-109. https://doi.org/10.1016/j.jclepro.2017.12.150
  • [47] Bhargav, H., Ramani, B., Reddy, V. S., Lai, F. C. Development of Semi-Continuous Solar Powered Adsorption Water Chiller for Food Preservation. Journal of Thermal Engineering. 2018; 4(4): 2169-2187. DOI: 10.18186/journal-of-thermal-engineering.434032
  • [48] Naik, H., Baredar, P., & Kumar, A. Medium temperature application of concentrated solar thermal technology: Indian perspective. Renewable and Sustainable Energy Reviews. 2017; 76: 369-378. https://doi.org/10.1016/j.rser.2017.03.014
  • [49] Bazri, S., Badruddin, I. A., Naghavi, M. S., Bahiraei, M. A review of numerical studies on solar collectors integrated with latent heat storage systems employing fins or nanoparticles. Renewable Energy. 2018; 118: 761-778. https://doi.org/10.1016/j.renene.2017.11.030
  • [50] Yari, A., Hosseinzadeh, S., Golneshan, A. A., Ghasemiasl, R. Numerical simulation for thermal design of a gas water heater with turbulent combined convection. In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers Digital Collection. 2015; https://doi.org/10.1115/AJKFluids2015-3305
  • [51] Hoseinzadeh, S., Moafi, A., Shirkhani, A., Chamkha, A. J. Numerical validation heat transfer of rectangular cross-section porous fins. Journal of Thermophysics and Heat Transfer. 2019; 33(3): 698-704. https://doi.org/10.2514/1.T5583
  • [52] Bilich, A., Langham, K., Geyer, R., Goyal, L., Hansen, J., Krishnan, A., Sinha, P. Life cycle assessment of solar photovoltaic microgrid systems in off-grid communities. Environmental science & technology. 2017; 51(2): 1043-1052. https://doi.org/10.1021/acs.est.6b05455
  • [53] Sharma, A. K., Sharma, C., Mullick, S. C., Kandpal, T. C. Potential of solar industrial process heating in dairy industry in India and consequent carbon mitigation. Journal of cleaner production. 2017; 140: 714-724. https://doi.org/10.1016/j.jclepro.2016.07.157
  • [54] Houston, C., Gyamfi, S., Whale, J. Evaluation of energy efficiency and renewable energy generation opportunities for small scale dairy farms: A case study in Prince Edward Island, Canada. Renewable energy. 2014; 67: 20-29. https://doi.org/10.1016/j.renene.2013.11.040
  • [55] Modi, A., Prajapat, R. Pasteurization process energy optimization for a milk dairy plant by energy audit approach. Int. J. Sci. Technol. 2014; Res., 3(6): 181-188.
  • [56] Panchal, H., Patel, R., Parmar, K. D. Application of solar energy for milk pasteurisation: a comprehensive review for sustainable development. International Journal of Ambient Energy. 2020; 41(1): 117-120. https://doi.org/10.1080/01430750.2018.1432503
  • [57] Panchal, H., Patel, R., Chaudhary, S., Patel, D. K., Sathyamurthy, R., Arunkumar, T. Solar energy utilisation for milk pasteurisation: A comprehensive review. Renewable and Sustainable Energy Reviews. 2018; 92: 1-8. https://doi.org/10.1016/j.rser.2018.04.068
  • [58] Genç, S., Yıldırım, N. Sustainable dairy industry by using renewable energy source. Celal Bayar Üniversitesi Fen Bilimleri Dergisi. 2017; 13(3): 665-670. https://doi.org/10.18466/cbayarfbe.339326
  • [59] Quijera, J. A., Alriols, M. G., Labidi, J. Integration of a solar thermal system in a dairy process. Renewable Energy. 2011; 36(6): 1843-1853. https://doi.org/10.1016/j.renene.2010.11.029
  • [60] Torquati, B., Venanzi, S., Ciani, A., Diotallevi, F., Tamburi, V. Environmental sustainability and economic benefits of dairy farm biogas energy production: A case study in Umbria. Sustainability. 2014; 6(10): 6696-6713. https://doi.org/10.3390/su6106696
  • [61] Wallerand, A. S., Kermani, M., Voillat, R., Kantor, I., Maréchal, F. Optimal design of solar-assisted industrial processes considering heat pumping: Case study of a dairy. Renewable Energy. 2018; 128: 565-585. https://doi.org/10.1016/j.renene.2017.07.027
  • [62] Panchal, H., Patel, R., Parmar, K. D. Application of solar energy for milk pasteurisation: a comprehensive review for sustainable development. International Journal of Ambient Energy. 2020; 41(1): 117-120. https://doi.org/10.1080/01430750.2018.1432503
  • [63] Singh M., Kale, D. V., Chavan, B., Suvartan, R., Dhotre, A. V. A Review on Soalr Water Heating System and its Use in Dairy Industry. Internation journal of Current Microbiology and Applied Science. 2019; 8(4): 1975-1986. DOI:10.20546/ijcmas.2019.804.231
  • [64] Santhoshkumar, A., Kumar, R. M. D., Babu, D., Thangarasu, V., Anand, R. Effective utilization of high-grade energy through thermochemical conversion of different wastes. In Pollutants from Energy Sources. 2019; pp. 189-251. Springer, Singapore. https://doi.org/10.1007/978-981-13-3281-4_11
  • [65] Muller, H., Brandmayr, S., & Zörner, W. Development of an evaluation methodology for the potential of solar-thermal energy use in the food industry. Energy Procedia 2014; 48: 1194-1201. https://doi.org/10.1016/j.egypro.2014.02.135
  • [66] Nandi, P. Solar thermal energy utilization in food processing industry in India. Pacific Journal of Science and Technology 2009; 10(1): 123-131. http://www.akamaiuniversity.us/PJST.htm
  • [67] Xu, N., Hu, X., Xu, W., Li, X., Zhou, L., Zhu, S., Zhu, J. Mushrooms as efficient solar steam generation devices. Advanced Materials 2017; 29(28): 1606762. https://doi.org/10.1002/adma.201606762
  • [68] Bindlish, R. Power scheduling and real-time optimization of industrial cogeneration plants. Computers & Chemical Engineering 2016; 87: 257-266. https://doi.org/10.1016/j.compchemeng.2015.12.023
  • [69] Bless, F., Arpagaus, C., Bertsch, S. S., Schiffmann, J. Theoretical analysis of steam generation methods-Energy, CO2 emission, and cost analysis. Energy 2017; 129: 114-121. https://doi.org/10.1016/j.energy.2017.04.088
  • [70] Zhou, W., Cardenas, M., Moyeda, D. Method for CFD facilitated pressure rise calculation due to deflagration in heat recovery steam generator. Process Safety Progress 2017; 36(4): 408-413. https://doi.org/10.1002/prs.11887
  • [71] Li, J., Wang, K., Cheng, L. Experiment and optimization of a new kind once-through heat recovery steam generator (HRSG) based on analysis of exergy and economy. Applied Thermal Engineering 2017; 120: 402-415. https://doi.org/10.1016/j.applthermaleng.2017.04.025
  • [72] Hanafizadeh, P., Falahatkar, S., Ahmadi, P., Siahkalroudi, M. M. A novel method for inlet duct geometry improvement of heat recovery steam generators. Applied Thermal Engineering 2015; 89: 125-133. https://doi.org/10.1016/j.applthermaleng.2015.05.075
  • [73] Callak, M., Balkan, F., Hepbasli, A. Avoidable and unavoidable exergy destructions of a fluidized bed coal combustor and a heat recovery steam generator. Energy Conversion and Management. 2015; 98: 54-58. https://doi.org/10.1016/j.enconman.2015.03.039
  • [74]Sharma, N. K., Tiwari, P. K., Sood, Y. R. Solar energy in India: Strategies, policies, perspectives and future potential. Renewable and Sustainable Energy Reviews 2012; 16(1): 933-941. https://doi.org/10.1016/j.rser.2011.09.014
  • [75] Gomri, R., Hakimi, R. Second law analysis of double effect vapour absorption cooler system. Energy conversion and management. 2008; 49(11): 3343-3348. https://doi.org/10.1016/j.enconman.2007.09.033
  • [76] Kaushik, S. C., Arora, A. Energy and exergy analysis of single effect and series flow double effect water–lithium bromide absorption refrigeration systems. International journal of Refrigeration. 2009; 32(6): 1247-1258. https://doi.org/10.1016/j.ijrefrig.2009.01.017
  • [77] Misra, R. D., Sahoo, P. K., Gupta, A. Thermoeconomic evaluation and optimization of a double-effect H2O/LiBr vapour-absorption refrigeration system. International Journal of Refrigeration 2005; 28(3): 331-343. https://doi.org/10.1016/j.ijrefrig.2004.09.006
  • [78] Talbi, M. M., Agnew, B. Exergy analysis: an absorption refrigerator using lithium bromide and water as the working fluids. Applied Thermal Engineering 2000; 20(7): 619-630. https://doi.org/10.1016/S1359-4311(99)00052-6