Energy and exergy analysis of a combined system: cascade organic Rankine cycle and cascade refrigeration cycle

In this paper, a new combined system is proposed for recovering thermal energy at medium temperature using a cascade organic Rankine cycle to feed a cascade refrigeration cycle. Energy and exergy analysis is applied to the combined system to determine its performance using different working fluids under the same operating conditions taking into account the effect of some operating parameters and the selection of organic fluids on cycle performance. The pair of organic fluid (Toluene/R245fa) used for the cascade organic Rankine cycle and the pairs (R717/R744, R717/R23, R134a/R23) used for the cascade refrigeration cycles. The results show that the combined system function with the couple (R717/R23) for cascade refrigeration cycle gives better exergy efficiency 50.03% compared to other couples, 49.57% for the couple (R717/R744), and 48.01% for the couple (R134a/R23). The thermodynamic evaluation shows that the operating temperatures, such as the cascade organic Rankine cycle evaporation temperature and the cascade refrigeration cycle evaporation temperature influence the performance of the combined system.

___

  • [1] Braimakis, K., & Karellas, S. Energetic optimization of regenerative Organic Rankine Cycle (ORC) configurations. Energy Conversion and Management 2018;159:353-370. https://doi.org/10.1016/j.enconman.2017.12.093.
  • [2] Bellos, E., Vellios, L., Theodosiou, I. C., & Tzivanidis, C. Investigation of a solar-biomass polygeneration system. Energy conversion and management 2018;173:283-295. https://doi.org/10.1016/j.enconman.2018.07.093.
  • [3] Bellos, E., & Tzivanidis, C. Parametric analysis and optimization of a solar driven trigeneration system based on ORC and absorption heat pump. Journal of cleaner production 2017;161:493-509. https://doi.org/10.1016/j.jclepro.2017.05.159.
  • [4] Bellos, E., & Tzivanidis, C. Multi-objective optimization of a solar driven trigeneration system. Energy 2018;149:47-62. doi: 10.1016/j.energy.2018.02.054. [5] Li, T., Yuan, Z., Xu, P., & Zhu, J. Entransy dissipation/loss-based optimization of two-stage organic Rankine cycle (TSORC) with R245fa for geothermal power generation. Science China Technological Sciences 2016;59(10): 1524-1536. https://doi.org/10.1007/s11431-016-0151-1.
  • [6] Guo, T., Wang, H., & Zhang, S. Comparative analysis of CO 2-based transcritical Rankine cycle and HFC245fa-based subcritical organic Rankine cycle using low-temperature geothermal source. Science China Technological Sciences 2010;53(6): 1638-1646. https://doi.org/10.1007/s11431-010-3123-4.
  • [7] Heberle, F., & Brüggemann, D. Exergy based fluid selection for a geothermal Organic Rankine Cycle for combined heat and power generation. Applied Thermal Engineering 2010;30(11-12):1326-1332. https://doi.org/10.1016/j.applthermaleng.2010.02.012.
  • [8] Liu, Q., Duan, Y., & Yang, Z. Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids. Energy 2013;63: 123-132. https://doi.org/10.1016/j.energy.2013.10.035
  • [9] Roy, D., & Ghosh, S. Energy and exergy analyses of an integrated biomass gasification combined cycle employing solid oxide fuel cell and organic Rankine cycle. Clean Technologies and Environmental Policy 2017;19(6):1693-1709.
  • [10] Taljan, G., Verbič, G., Pantoš, M., Sakulin, M., & Fickert, L. Optimal sizing of biomass-fired Organic Rankine Cycle CHP system with heat storage. Renewable Energy 2012;41:29-38. https://doi.org/10.1016/j.renene.2011.09.034.
  • [11] Gutiérrez-Arriaga, C. G., Abdelhady, F., Bamufleh, H. S., Serna-González, M., El-Halwagi, M. M., & Ponce-Ortega, J. M. Industrial waste heat recovery and cogeneration involving organic Rankine cycles. Clean Technologies and Environmental Policy 2015;17(3):767-779. https://doi.org/10.1007/s10098-014-0833-5.
  • [12] Sun, W., Yue, X., & Wang, Y. Exergy efficiency analysis of ORC (Organic Rankine Cycle) and ORC-based combined cycles driven by low-temperature waste heat. Energy Conversion and Management 2017;135:63-73. https://doi.org/10.1016/j.enconman.2016.12.042.
  • [13] Shaaban, S. Analysis of an integrated solar combined cycle with steam and organic Rankine cycles as bottoming cycles. Energy conversion and management 2016;126:1003-1012. https://doi.org/10.1016/j.enconman.2016.08.075.
  • [14] Acar, M. S., & Arslan, O. Energy and exergy analysis of solar energy-integrated, geothermal energy-powered Organic Rankine Cycle. Journal of Thermal Analysis and Calorimetry 2019;137(2): 659-666.
  • [15] Touaibi, R., Köten, H., Feidt, M., & Boydak, O. Investigation of three Organic Fluids Effects on Exergy Analysis of a Combined Cycle: Organic Rankine Cycle/Vapor Compression Refrigeration. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 2018;52(2):232-245.
  • [16] Bu, X., Wang, L., & Li, H. Performance analysis and working fluid selection for geothermal energy-powered organic Rankine-vapor compression air conditioning. Geothermal Energy 2013;1(1): 2. https://doi.org/10.1186/2195-9706-1-2.
  • [17] Saleh, B. Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy. Journal of advanced research 2016;7(5):651-660. https://doi.org/10.1016/j.jare.2016.06.006.
  • [18] Özdemir, e., & Milic, M. Thermodynamic analysis of basic and regenerative organic Rankine cycles using dry fluids from waste heat recovery. Journal of thermal engineering 2018;4(5):2381-2393. http://doi.org/10.18186/thermal.439288.
  • [19] Kerme, E., & Orfi, J. Exergy-based thermodynamic analysis of solar driven organic Rankine cycle. Journal of Thermal Engineering 2015, 1(5):192-202.
  • [20] Koroglu, T., & Oguz, S. Advanced exergy analysis of an organic Rankine cycle waste heat recovery system of a marine power plant. Journal of Thermal Engineering 2017;3(2):1136-1148. https://doi.org/10.18186/thermal.298614.
  • [21] Touaibi, R., Feidt, M., Vasilescu, E. E., & Abbes, M. T. Modelling and Optimization Study of an Absorption Cooling Machine using Lagrange Method to Minimize the Thermal Energy Consumption. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 2019;58 (2): 207-218.
  • [22] Touaibi, R., Feidt, M., Vasilescu, E. E., & Abbes, M. T. Parametric study and exergy analysis of solar water-lithium bromide absorption cooling system. International Journal of Exergy 2013;13(3):409-429.
  • [23] Kalla, S. K., Arora, B. B., & Usmani, J. A. Performance analysis of R22 and its substitutes in air conditioners. Journal of Thermal Engineering 2018;4(1):1724-1736. https://doi.org/10.18186/journal-of-thermal-engineering.367419.
  • [24] Kutlu, Ç., Ünal, Ş., & Erdinç, M. T. Thermodynamic analysis of bi-evaporator ejector refrigeration cycle using R744 as natural refrigerant. Journal of Thermal Engineering 2016;2(2):735-740. https://doi.org/10.18186/journal-of-thermal-engineering.408659.
  • [25] Seckin, c. Investigation of the effect of the primary nozzle throat diameter on the evaporator performance of an ejector expansion refrigeration cycle. Journal of thermal engineering 2018;4(3):1939-1953. https://doi.org/10.18186/journal-of-thermal-engineering.408659.
  • [26] Lee, T. S., Liu, C. H., & Chen, T. W. Thermodynamic analysis of optimal condensing temperature of cascade-condenser in 〖CO〗_2/〖NH〗_3 cascade refrigeration systems. International Journal of Refrigeration 2006;29(7):1100-1108. https://doi.org/10.1016/j.ijrefrig.2006.03.003.
  • [27] Getu, H. M., & Bansal, P. K. Thermodynamic analysis of an R744–R717 cascade refrigeration system. International journal of refrigeration 2008; 31(1):45-54. https://doi.org/10.1016/j.ijrefrig.2007.06.014.
  • [28] Kilicarslan, A., & Hosoz, M. Energy and irreversibility analysis of a cascade refrigeration system for various refrigerant couples. Energy Conversion and Management 2010;51(12):2947-2954. https://doi.org/10.1016/j.enconman.2010.06.037.
  • [29] Dopazo, J. A., Fernández-Seara, J., Sieres, J., & Uhía, F. J. Theoretical analysis of a 〖CO〗_2/〖NH〗_3 cascade refrigeration system for cooling applications at low temperatures. Applied Thermal Engineering 2009;29(8-9):1577-1583. https://doi.org/10.1016/j.applthermaleng.2008.07.006.
  • [30] Dopazo, J. A., & Fernández-Seara, J. Experimental evaluation of a cascade refrigeration system prototype with CO2 and NH3 for freezing process applications. International Journal of Refrigeration 2011, 34(1):257-267. https://doi.org/10.1016/j.ijrefrig.2010.07.010.
  • [31] Ust, Y., & Karakurt, A. S. Analysis of a Cascade Refrigeration System (CRS) by Using Different Refrigerant Couples Based on the Exergetic Performance Coefficient (EPC) Criterion. Arabian Journal for Science and Engineering 2014;39(11):8147-8156. https://doi.org/10.1007/s13369-014-1335-9.
  • [32] Yun, E., Park, H., Yoon, S. Y., & Kim, K. C. Dual parallel organic Rankine cycle (ORC) system for high efficiency waste heat recovery in marine application. Journal of Mechanical Science and Technology 2015;29(6):2509-2515. http://dx.doi.org/10.1007/s12206-015-0548-5.
  • [33] Molés, F., Navarro-Esbrí, J., Peris, B., Mota-Babiloni, A., & Kontomaris, K. K. Thermodynamic analysis of a combined organic Rankine cycle and vapor compression cycle system activated with low temperature heat sources using low GWP fluids. Applied Thermal Engineering 2015;87:444-453. https://doi.org/10.1016/j.applthermaleng.2015.04.083.
  • [34] Sadreddini, A., Ashjari, M. A., Fani, M., & Mohammadi, A. Thermodynamic analysis of a new cascade ORC and transcritical CO2 cycle to recover energy from medium temperature heat source and liquefied natural gas. Energy Conversion and Management 2018;167:9-20. https://doi.org/10.1016/j.enconman.2018.04.093.
  • [35] Lizarte, R., Palacios-Lorenzo, M. E., & Marcos, J. D. Parametric study of a novel organic Rankine cycle combined with a cascade refrigeration cycle (ORC-CRS) using natural refrigerants. Applied Thermal Engineering 2017;127:378-389. https://doi.org/10.1016/j.applthermaleng.2017.08.063.
  • [36] Yilmaz, F., Ozturk, M., & Selbas, R. Energy and exergy performance assessment of a novel solar-based integrated system with hydrogen production. International journal of hydrogen energy 2019; 44(34):18732-18743. https://doi.org/10.1016/j.ijhydene.2018.10.118.
  • [37] Ishaq, H., Dincer, I., & Naterer, G. F. Exergy-based thermal management of a steelmaking process linked with a multi-generation power and desalination system. Energy 2018;159:1206-1217. https://doi.org/10.1016/j.energy.2018.06.213.