Study of thermal and mechanical properties of typha leaf - clay panels

Study of thermal and mechanical properties of typha leaf - clay panels

This study contributes to the valorization of typha as local materials of building for thermal insulation. We will examine the influence of the binder content and granulometry on the mechanical and thermal properties of typha - clay panels. The plant of typha is used in different granulometries such as powdered typha and defibrated typha. The results showed that compressive strength, thermal conductivity and effusivity depend on the particle size of the typha and also the binder. The panels of defibrated typha have a better thermal insulation performance (0.085 W.m-1.K-1 for 66.66 %), which is comparable with many of natural insulating materials. The panels also have low thermal effusivities which show that they have low thermal inertia.

___

  • [1] Meukam, P., Jannot, Y., Noumowe, A., & Kofane, T. (2004). Thermo physical characteristics of econom- ical building materials. Construction and Building Materials, 18(6), 437–443. [CrossRef]
  • [2] Millogo, Y., Morel, J. C., Aubert, J. E., & Ghavami, K. (2014). Experimental analysis of Pressed Adobe Blocks reinforced with Hibiscus cannabinus fibers. Construction and Building Materials, 52, 71–78. [CrossRef ]
  • [3] Bal, H., Jannot, Y., Quenette, N., Chenu, A., & Gaye, S. (2012). Water content dependence of the porosity, density and thermal capacity of laterite based bricks with millet waste additive. Construction and Build- ing Materials, 31, 144–150. [CrossRef]
  • [4] Tettey, U. Y. A., Dodoo, A., & Gustavsson, L. (2014). Effects of different insulation materials on primary energy and CO2 emission of a multi-storey resi- dential building. Energy and Buildings, 82, 369–377. [CrossRef ]
  • [5] de Bruijn, P. B., Jeppsson, K. H., Sandin, K., & Nils- son, C. (2009). Mechanical properties of lime–hemp concrete containing shives and fibres. Biosystems Engineering, 103(4), 474–479. [CrossRef]
  • [6] Ashori, A., & Nourbakhsh, A. (2008). Effect of press cycle time and resin content on physical and me- chanical properties of particleboard panels made from the underutilized low-quality raw materi- als. Industrial Crops and Products, 28(2), 225–230. [CrossRef ]
  • [7] Lertsutthiwong, P., Khunthon, S., Siralertmukul, K., Noomun, K., & Chandrkrachang, S. (2008). New insulating particleboards prepared from mixture of solid wastes from tissue paper manufacturing and corn peel. Bioresource Technology, 99(11), 4841– 4845. [CrossRef ]
  • [8] Cuk, N., Kunaver, M., & Medved, S. (2011). Prop- erties of particleboards made by using an adhesive with added liquefied wood. Materiali in Tehnologije, 45(3), 241–245.
  • [9] Cérézo, V. (2005). Propriétés mécaniques, ther- miques et acoustiques d’un matériau à base de part- icules végétales: approche expérimentale et modélisation théorique [Doctoral dissertation, Institut National des Sciences Appliquées, Lyon. (French)
  • [10] Chikhi, M., Agoudjil, B., Boudenne, A., & Gher- abli, A. (2013). Experimental investigation of new biocomposite with low cost for thermal insulation.Energy and Buildings, 66, 267–273. [CrossRef]
  • [11] Awwad, E., Choueiter, D., & Khatib, H. (2013). Concrete masonry blocks reinforced with local in- dustrial hemp fibers and hurds. Proceedings 3rd In- ternational Conference On Sustainable Construction Materials And Technology, Kyoto, Japan, 28, 18–21.
  • [12] Chinta, S. K., Katkar, P. M., Jafer, M. M. (2013). Nat- ural fibres reinforced gypsum composites. International Journal of Engineering and Management Sciences, 4(3), 318–325.
  • [13] Moussa, T., Maalouf, C., Lachi, M., Umurigirwa, S., Mai, T. H., & Henry, J. F. (2016). Development and performance evaluation of a hemp–starch com- posite. Journal of Building Physics, 40(3), 278–295. [CrossRef ]
  • [14] Ponnukrishnan, P., Thanu, M. C., & Richard, S. (2014). Mechanical characterization of Typha Domingensis natural fiber reinforced polyester com- posites. International Journal of Research Science and Technology Engineering Mathematics, 6, 241-244.
  • [15] Diatta, M. T., Gaye, S., Thiam, A., & Azilinon, D. (2011). Détermination des propriétés thermo-phy- sique et mécanique du typha australis. In Congres SFT, Perpignan, (France).
  • [16] Dieye, Y., Sambou, V., Faye, M., Thiam, A., Adj, M., & Azilinon, D. (2017). Thermo-mechanical char- acterization of a building material based on Typha Australis. Journal of Building Engineering, 9, 142– 146. [CrossRef ]
  • [17] Niang, I., Maalouf, C., Moussa, T., Bliard, C., Samin, E., Thomachot-Schneider, C., Lachi, M., Pron, H., Mai, T. H., & Gaye, S. (2018). Hygrothermal perfor- mance of various Typha–clay composite. Journal of Building Physics, 42(3), 316–335. [CrossRef]
  • [18] Maillet, D., André, S., Batsale, J. C., Degiovanni, A., & Moyne, C. (2000). Solving the Heat Equation through Integral Transforms. Wiley.
  • [19] Collet, F., & Pretot, S. (2014). Thermal conductivity of hemp concretes: Variation with formulation, den- sity and water content. Construction and Building Materials, 65, 612–619. [CrossRef]
  • [20] Collet-Foucault, F. (2004). Caractérisation hydrique et thermique de matériaux de génie civil à faibles impacts environnementaux [Doctoral Dissertation, Rennes, INSA].
  • [21] Evrard, A. (2008). Transient hygrothermal behaviour of lime-hemp materials [Doctoral Dissertation, Uni- versité catholique de Louvain].