Plaster of Paris containing zero valent iron particles: Designing a permeable reactive barrier, used for remediation of 4-nitroaniline pollution

Plaster of Paris containing zero valent iron particles: Designing a permeable reactive barrier, used for remediation of 4-nitroaniline pollution

Permeable reactive barrier (PRB) containing zero valent iron (ZVI), plaster and additives to make a porous composite structure, was tested to remove an organic nitro compound as model pollutant. An aqueous solution of 4-nitroaniline (PNA) was passed through a porous plaster column and chemical degradation quantified by UV-Vis spectroscopy. PNA was reduced to p-phenylenediamine and the rate of the reduction was strongly related to ZVI amount, pollutant volume, and the contact rate with the metal particles. The PBR could be controlled by design and operation. Test columns were made to evaluate the materials for making precast plaster blocks containing ZVI. The results showed that such porous plaster blocks could be efficient as retaining funneling walls for environmental applications. Thus economical Calcium sulphate solids can be used for making remediation columns for depolution with reactive products such as iron metal with capacity for treating unwanted toxic nitrates, or chlorinatedsolvents present in waterways. A reactive permeable barrier containing zero valent iron will last as long as some iron particles remain to react.

___

  • [1] Henderson, A.D., & Demond A.H. (2007). Long- term performance of zero-valent iron permeable reactive barriers: a critical review. Environmental Engineering Science, 24, 401–423. [CrossRef]
  • [2] Grajales-Mesa S.J., & Malina G. (2016). Screen- ing reactive materials for a permeable barrier to treat TCE-contaminated groundwater: laboratory studies. Environmental Earth Science, 75, 772–785. [CrossRef ]
  • [3] Dorathi P.J., & Kandasamy P. (2012). Dechlorination of chlorophenols by zero valent iron impregnated silica. Journal of Environmental Science, 24, 765–773. [CrossRef ]
  • [4] Zingaretti D., I.Verginelli, Luisetto I., & Baciocchi R. Maamoun I., Eljamal O., Eljamal R., Falyouna O., & Sugihara Y. (2020). Promoting aqueous and trans- port characteristics of highly reactive nanoscale zero valent iron via different layered hydroxide coatings.
  • [5] Bortone I., Erto A., Di Nardo A., Santonastaso G.F., Chianese S., & Musmarra D. (2020). Pump-andtreat configurations with vertical and horizontal wells to remediate an aquifer. Journal of Contaminant Hydrology, 235, Article 103725. [CrossRef]
  • [6] Béchamp A. (1854). De l'action des protosels de fer sur la nitronaphtaline et la nitrobenzine. nouvelle méthode de formation des bases organiques artificielles de Zinin. Annales de Chimie et de Physique, 42, 186–196.
  • [7] Schabel T., Belger C., & Plietker B. (2013). A mild chemoselective ru-catalyzed reduction of alkynes, ketones, and nitro compounds. Organic Letters,15, 2858–2861.
  • [8] Farooqi Z.H., Khalid R., Begum R., Farooq U., Wu Q., Wu W., Ajmal M., Irfan A., & Naseem K. (2018). Facile synthesis of silver nanoparticles in a crosslinked polymeric system by in situ reduction method for catalytic reduction of 4-nitroaniline. Environmental Technology, 40, 1–30. [CrossRef]
  • [9] Hu R., Cui X., Gwenzi W., Wu S., & Noubactep C. (2018). Fe0/H2O Systems for environmental remediation: the scientific history and future research directions. Water, 10(12), 1739–1755. [CrossRef]
  • [10] Eljamal O., Thompson I.P., Maamoun I., Shubair T., Eljamal K., Lueangwattanapong K., & Sugihara Y. (2020). Investigating the design parameters for a permeable reactive barrier consisting of nanoscale zero-valent iron and bimetallic iron/copper for phosphate removal. Journal of Molecular Liquids, 299, Article 112144. [CrossRef]
  • [11] Maamoun I., Eljamal O., Eljamal R., Falyouna O., & Sugihara Y. (2020). Promoting aqueous and transport characteristics of highly reactive nanoscale zero valent iron via different layered hydroxide coatings. Applied Surface Science, 506, Article 145018.
  • [12] Wantanaphong J., Mooney S.J., & Bailey E.H. (2006). Quantification of pore clogging characteristics in potential permeable reactive barrier (PRB) substrates using image analysis. Journal of Contaminant Hydrology, 8, 299–320. [CrossRef]
  • [13] Touze S., Chartier R., & Gaboriau H. (2004). Etat de l’art sur les barrières perméables réactives (BPR): Réalisations, expériences, critères décisionnels et perspectives; BRGM Orléans, France.
  • [14] Saadaoui E., Ghazela N., Ben Romdhanea C., & Massoudi N. (2017). Phosphogypsum: potential uses and problems - a review. International Journal of Environmental Study, 74, 558–567. [CrossRef]
  • [15] Chernysh Y., Yakhnenko O., Chubur V., & Roubik H. (2021). Phosphogypsum recycling: a review of environmental issues, current trends and prospects. Applied Science, 11, 1575. [CrossRef]
  • [16] Rumble J., (Ed.). (2019). CRC handbook of chemistry and physics (100th ed.). CRC Press.
  • [17] Lewry A.J., & Williamson J. (1994). The setting of gypsum plaster: part I. The hydration of calcium sulphate hemihydrate. Journal of Materials Science, 29, 5279–5284. [CrossRef]
  • [18] Adrien J., Meille S., Tadier S., Maire E., & Sasaki L. (2016). In-situ X-ray tomographic monitoring of gypsum plaster setting. Cement and Concrete Research, 82, 107–116. [CrossRef]
  • [19] Diaga Seck M., Van Landeghem M., Faure P., Rodts S., Combes R., Cavalie P., Keita E., & Coussot P. (2015). The mechanisms of plaster drying. Journal of Materials Science, 50, 2491–2501. [CrossRef]
  • [20] Jaffel H., Korb J.P., Ndobo-Epoy J.P., Morin V., & Guicquero J.P. (2006). Probing Microstructure Evolution during the Hardening of Gypsum by Proton NMR Relaxometry. The Journal of Physical Chemistry B, 110, 7385–7391. [CrossRef]
  • [21] Fisher R.D., Hanna J.V., Reesc G.J., & Walton R.I. (2012). Calcium sulfate-phosphate composites with enhanced water resistance. Journal of Materials Chemistry, 22, 4837–4846. [CrossRef]
  • [22] Pham Minh D., Dung Tran N., Nzihou A., & Sharrock P. (2014). Novel one-step synthesis and characterization of bone-like carbonated apatite from calcium carbonate, calcium hydroxide and orthophosphoric acid as economical starting materials. Materials Research Bulletin, 51, 236–243. [CrossRef]
  • [23] Lanzóna M., & García-Ruiz P.A. (2012). Effect of citric acid on setting inhibition and mechanical properties of gypsum building plasters. Construction and Building Materials, 28, 506–511. [CrossRef]
  • [24] Mori T. (1982). The effect of boric acid on the thermal behavior of cast gypsum. Dental Materials Journal, 1, 73-80. [CrossRef]
  • [25] Al-Othman A., & Demopoulos G.P. (2009). Gypsum crystallization and hydrochloric acid regeneration by reaction of calcium chloride solution with sulfuric acid. Hydrometallurgy, 96, 95–102. [CrossRef]
  • [26] Lajoie-Halova B., Brumas V., Fiallo M.M.L., & Berthon G. (2006). Copper(II) interactions with non-steroidal anti-inflammatory agents. III – 3-Methoxyanthranilic acid as a potential OH-inactivating ligand: a quantitative investigation of its copper handling role in vivo. Journal of Inorganic Biochemistry, 100, 362–373. [CrossRef]
  • [27] Sapurina I., & Stejskal J. (2008). The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International, 57, 1295–1325. [CrossRef]
  • [28] Khalil A.M.E., Eljamal O., Amen T.W.M., Sugihara Y., & Matsunaga N. (2018). Scrutiny of interference effect of ions and organic matters on water treatment using supported nanoscale zero-valent iron. Environmental Earth Science, 77, 489–501. [CrossRef]
  • [29] Popat V., & Padhiyar N. (2013). Kinetic study of bechamp process for P-Nitrotoluene reduction to P-Toluidine. International Journal of Chemical Engineering and Applications, 4(6), 401–405. [CrossRef]
  • [30] Noubactep C. (2009). An analysis of the evolution of reactive species in Fe0/H2O systems. Journal of Hazardous Materials, 168(2-3), 1626–1631. [CrossRef]
  • [31] Noubactep C. (2008). A Critical Review on the Process of Contaminant Removal in Fe0–H2O Systems. Environmental Technology 29(8), 909–920. [CrossRef]
  • [32] Noubactep C. (2009). Characterizing the discoloration of methylene blue in Fe0/H2O systems. Journal of Hazardous Materials, 166(1), 79–87. [CrossRef]
  • [33] Lemlikchi W., Sharrock P., Fiallo M., Nzihou A., & Mecherri M.O. (2014). Hydroxyapatite and Alizarin sulfonate ARS modeling interactions for textile dyes removal from wastewaters. Procedia Engineering, 83, 378–385. [CrossRef]
  • [34] Noubactep C. (2007). Processes of contaminant removal in “fe0-h2o” systems revisited: the importance of co-precipitation. Open Environmental Sciences, 1, 9–13. [CrossRef]
  • [35] ITRC. (2021 December 15). Technical Regulatory Guidance Document: Permeable Reactive Barrier: Technology Update (PRB-5, 2011). https://connect. itrcweb.org/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=fd058d3e-9bdc4103-8f13-4195efa8499f