Binalarda enerji performansının arttırılması amacıyla kullanılan yalıtım malzemelerinin Net bugünkü değer yöntemi ile maliyet analizi

Günümüzde, enerji kaynaklarının etkin ve verimli kullanılmasına dair çözümler üretilmesi hemen her sektörde öncelikli alanlar arasında yer almaktadır. Enerji tüketimi açısından, bina sektöründe geliştirilen her bir çözüm, toplam enerji tüketiminin azaltılmasında büyük etkiye sahiptir. Bu çalışmada; Türkiye’de 1. Derece gün bölgesinde yer alan bir binada, enerji performansını arttırmak amacıyla; duvar ve çatıda kullanılan farklı tipte yalıtım malzemeleri, maliyet etkinlik açısından araştırılmıştır. Duvar ve çatı için yaygın olarak tercih edilen dörder yalıtım malzemesi belirli kalınlıklarda test edilmiştir. Belirlenen kalınlıklara ait senaryolar Design builder simulasyon programı ile simule edilerek enerji tüketim değerleri saptanmıştır. Her bir alternatifin ilk yatırım maliyetleri hesaplanmış ve enerji tasarrufları saptanmıitır. İlk yatırım maliyetleri ve elde edilen enerji tasarrufları, Net Bugünkü değer yöntemine göre değerlendirilerek her bir alternatifin öncelik sıralaması ortaya konmuştur. Elde edilen sonuçlara göre çalışmada kullanılan malzemeler karşılaştırıldığında; çatı için Net bugünkü değeri en yüksek malzeme cam yünü, duvar için ise net bugünkü değeri en yüksek malzemenin taş yünü olduğu belirlenmiştir.

Cost analysis of insulation materials used to increase energy performance in buildings with Net Present Value method

Today, producing solutions for the effective and efficient use of energy resources is among the priority areas in almost every sector. In terms of energy consumption, each solution developed in the building sector significantly reduces total energy consumption. In this study, different types of insulation materials used in walls and roofs were investigated in terms of cost-effectiveness to improve the energy performance of a building located in the 1st-degree day zone in Türkiye. Four commonly preferred insulation materials for walls and roofs were tested at specific thicknesses. The Design-Builder simulation program simulated scenarios for the specified thicknesses, and energy consumption values were determined. The initial investment costs of each alternative were calculated, and energy savings were determined. The initial investment costs and energy savings were evaluated according to the Net Present Value method, and each alternative's priority ranking was revealed. According to the results obtained, when the materials used in the study are compared, it is determined that the material with the highest net present value for the roof is glass wool, and the material with the highest net present value for the wall is stone wool.

___

  • 1. The European Parliament and the Council of the European Union. (May 19, 2010). European Parliament and the Council of the European Union. Official Journal of the European Union, 153/13–153/25. https://eur-lex.europa.eu/LexUriServ/LexUriServ. do?uri=OJ:L:2010:153:0013:0035:en:PDF
  • 2. Aşikoğlu, A., Altin, M., & Bayram, N. S. (2021). Application of the passive house certification system in existing buildings: enerphit certification system. Afyon Kocatepe University International Journal of Engineering Technology and Applied Sciences, 21(5), 1146–1156. [Turkish]
  • 3. Bakar, N. N. A., Hassan, M. Y., Abdullah, H., Rahman, H. A., Abdullah, M. P., Hussin, F., & Bandi, M. (2015). Energy efficiency index as an indicator for measuring building energy performance: A review. Renewable and Sustainable Energy Reviews, 44, 1–11. [CrossRef]
  • 4. Mohsen, M. S., & Akash, B. A. (2001). Some prospects of energy savings in buildings. Energy Conversion and Management, 42(11), 1307–1315. [CrossRef]
  • 5. Füchsl, S., Rheude, F., & Röder, H. (2022). Life cylce assessment (LCA) of thermal insulation materials: a critical review. Cleaner Materials, 5, Article 100119. [CrossRef]
  • 6. Schiavoni, S., Bianchi, F., & Asdrubali, F. (2016). Insulation materials for the building sector: A review and comparative analysis. Renewable and Sustainable Energy Reviews, 62, 988–1011. [CrossRef]
  • 7. Kumar, D., Alam, M., Zou, P. X., Sanjayan, J. G., & Memon, R. A. (2020). Comparative analysis of building insulation material properties and performance. Renewable and Sustainable Energy Reviews, 131, Article 110038. [CrossRef]
  • 8. The European Parliament and the Council of the European Union. (Dec 16, 2002). Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on the energy performance of buildings. Official Journal of the European Communities, L 1/66–L 1/71. https://eur- lex.europa.eu/LexUriServ/LexUriServ.do?uri=O- J:L:2003:001:0065:0071:en:PDF
  • 9. Turkish Standard. (2013). TS 825 Thermal insulation in buildings. Turkish Standard Institution. [Turkish] [10] Danaci, H. M., & Akin, N. (2022). Thermal insulation materials in architecture: a comparative test study with aerogel and rock wool. Environmental Science and Pollution Research, 29(48), 72979–72990. [CrossRef]
  • 10. Kulaksızoğlu, Z. (2006). Isı yalıtım sektör araştırması. Türkiye İstatistik Kurumu Ankara Bölge Müdürlüğü. [Turkish]
  • 11. Hall, M. R. (Ed.). (2010). Materials for energy efficiency and thermal comfort in buildings. Elsevier. [CrossRef] [13] Ülker, S. (2009). Isı yalıtım malzemelerinin özellikler- inin uygulamaya etkileri [Doctoral Dissertation]. Istanbul Technical University Institute of Science and Technology. [Turkish]
  • 12. Arslan, M. A., & Aktaş, M. (2018). Evaluation of insulation materials used in construction sector based on heat and sound insulation. Journal of Polytechnic, 21(2), 299–320. [Turkish]
  • 13. Fard, P. M., & Alkhansari, M. G. (2021). Innovative fire and water insulation foam using recycled plastic bags and expanded polystyrene (EPS). Construction and Building Materials, 305, Article 124785. [CrossRef]
  • 14. Zhao, Z., Yang, X., Qu, X., Zheng, J., & Mai, F. (2021). Thermal insulation performance evaluation of auto- claved aerated concrete panels and sandwich panels based on temperature fields: Experiments and simulations. Construction and Building Materials, 303, Article 124560. [CrossRef]
  • 15. Qu, X., & Zhao, X. (2017). Previous and present investigations on the components, microstructure and main properties of autoclaved aerated concrete–A [22] review. Construction and Building Materials, 135, 505–516. [CrossRef ]
  • 16. Thongtha, A., Maneewan, S., Punlek, C., & Ungkoon, Y. (2014). Investigation of the compressive strength, [23] time lags and decrement factors of AAC-lightweight concrete containing sugar sediment waste. Energy and Buildings, 84, 516–525. [CrossRef]
  • 17. Republic of Türkiye Ministry of Environment, Urbanization and Climate Change. (Feb 01, 2023). [24] 2023 yılı inşaat ve tesisat birim fiyatları. https://web- dosya.csb.gov.tr/db/yfk/icerikler/2023-b-r-m-f-yat- lari-1-20230130125553.pdf [Turkish]
  • 18. Büker, S., Aşıkoğlu, R., & Sevil, G. (2018). Finansal [25] yönetim. Sözkesen Press. [Turkish]
  • 19. Storesletten, K. (2003). Fiscal implications of im- migration—A net present value calculation. The Scandinavian Journal of Economics, 105(3), 487– 506. [CrossRef]
  • 20. Žižlavský, O. (2014). Net present value approach: method for economic assessment of innovation projects. Procedia-Social and Behavioral Sciences, 156, 506–512. [CrossRef]
  • 21. Central Bank of the Republic of Türkiye. (Feb 18, 2023). Reeskont ve avans faiz oranları. https://www. tcmb.gov.tr/wps/wcm/connect/TR/TCMB+TR/ Main+Menu/Temel+Faaliyetler/Para+Politikasi/Re- eskont+ve+Avans+Faiz+Oranlari [Turkish]
  • 22. Kono, J., Goto, Y., Ostermeyer, Y., Frischknecht, R., & Wallbaum, H. (2016). Factors for eco-efficiency improvement of thermal insulation materials. Key Engineering Materials, 678, 1–13. [CrossRef]
  • 23. Revenue Administration. (Feb 02, 2023). Redemp- tion rates. https://www.gib.gov.tr/sites/default/files/ fileadmin/user_upload/Yararli_Bilgiler /amortis- man_oranlari.pdf [Turkish]