Bentonit Tabanlı Çinko Komplekslerin Sentezi ve Karakterizasyonu

Geçiş metallerinin katı ya da polimer taşıyıcı malzemeler üzerine taşınımı ile elde edilen özellikle çevre dostu katalizörlerin, kimyasal tepkimelerde kullanımları son zamanlarda oldukça yaygınlaşmıştır. Çinko komplekslerinin homojen ve heterojen katalizörler olarak kullanıldığı çalışmalara literatürde sıklıkla rastlanmaktadır. Homojen katalizörlerin pek çok avantajının yanında tepkime ortamından ayırma güçlüğü, geri dönüştürülmesi ve sınırlı kimyasal-termal kararlılık gibi bazı dezavantajları bulunmaktadır. Sorunların çözümü katı katalizör destek malzemeleri kullanılarak aktif bileşenlerin bu destek malzemeler üzerine taşınımı ile gerçekleştirilebilmektedir. Dolayısıyla geçiş metal komplekslerinin katı destek maddeleri üzerine taşınımı yoluyla katalizör hazırlanması araştırmacılar için ilgi çekici hale gelmiştir. Doğal ya da işlenmiş killer ucuz olmaları ve doğada bol bulunmaları sebebiyle birçok kullanım alanına sahip olmalarının yanı sıra katalizör ya da katalizör taşıyıcısı olarak da kullanılabilmektedirler. Bu çalışmada doğal Enez/Edirne bentoniti asit ile aktive edilmiş (HB) ve hekzadesiltrimetil amonyum bromür (CTAB) ile organo-kil haline (HB/CTAB) dönüştürülmüştür. Daha sonra sentezlenen [Zn(acac)2H2O] ya da [Zn(p-H2NC6H4COO)2]1.5H2O komplekslerinin modifiye edilmiş killer üzerine ayrı ayrı doğrudan taşınımı ile heterojen katalizörler hazırlanmıştır. Sentezlenen katalizörlerin karakterizasyonu; X ışınları kırınımı, Fourier dönüşümlü kızılötesi spektroskopisi, termogravimetrik analiz, yüzey taramalı elektron mikroskobu ve Brunauer-Emmett-Teller özgül yüzey analizi yöntemleriyle gerçekleştirilmiştir.

Synthesis and characterization of bentonite based zinc complexes

In chemical reactions, the use of environmentally friendly catalysts obtained by transporting transition metals on solid or polymer carrier materials has become quite common recently. Studies in which zinc complexes are used as homogeneous and heterogeneous catalysts are frequently encountered in the literature. In addition to many advantages of homogeneous catalysts, disadvantages include difficulty separating from the reaction medium, recycling, and limited chemical-thermal stability. Solving problems can be solved by using solid catalyst sup-port materials and transferring the active ingredients to these materials. Therefore, catalysts prepared by transporting transition metal complexes onto solid supports have become interesting for researchers. Natural or processed clays can be used as catalysts or catalyst carriers and have many uses due to their cheapness and abundance. In this study, natural Enez/Edirne bentonite was acid-activated (HB) and converted to organo-clay (HB/CTAB) with hexadecyl-trimethylammonium bromide (CTAB). Then, heterogeneous catalysts were prepared by direct transport of the synthesized [Zn(acac)2H2O] or [Zn(p-H2NC6H4COO)2]1.5H2O complexes onto modified clays separately. The catalysts have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, surface scanning electron microscope, and Brunauer-Emmett-Teller specific surface analysis methods.

___

  • 1. Parmeggiani, C., Matassini, C., & Cardona, F. (2017). A step forward towards sustainable aerobic alcohol oxidation: new and revised catalysts based on tran- sition metals on solid supports. Green Chemistry, 19(9), 2030-2050. [CrossRef]
  • 2. Xia, Y., Campbell, C. T., Roldan Cuenya, B., & Mavrikakis, M. (2021). Introduction: Advanced ma- terials and methods for catalysis and electrocatalysis by transition metals. Chemical Reviews, 121(2), 563-566. [CrossRef]
  • 3. Zhang, Y., Li, W., Wang, J., Jin, J., Zhang, Y., Cheng, J., & Zhang, Q. (2023). Advancement in utilization of magnetic catalysts for production of sustain- able biofuels. Frontiers in Chemistry, 10, Article 1106426. [CrossRef]
  • 4. Miceli, M., Frontera, P., Macario, A., & Malara, A. (2021). Recovery/reuse of heterogeneous supported spent catalysts. Catalysts, 11(5), 591. [CrossRef]
  • 5. Valkenberg, M. H., & Hölderich, W. F. (2002). Prepa- ration and use of hybrid organic–inorganic catalysts. Catalysis Reviews, 44(2), 321-374. [CrossRef]
  • 6. Dioos, B. M., Vankelecom, I. F., & Jacobs, P. A. (2006). Aspects of immobilisation of catalysts on polymeric supports. Advanced Synthesis & Catalysis, 348(12‐13), 1413-1446. [CrossRef]
  • 7. Corma, A., & Garcia, H. (2006). Silica‐bound ho- homogeneous catalysts as recoverable and reusable catalysts in organic synthesis. Advanced Synthesis & Catalysis, 348(12‐13), 1391-1412. [CrossRef]
  • 8. De Vos, D. E., Dams, M., Sels, B. F., & Jacobs, P. A. (2002). Ordered mesoporous and microporous molecular sieves functionalized with transition metal complexes as catalysts for selective organic transformations. Chemical Reviews, 102(10), 3615-3640. [CrossRef ]
  • 9. Xia, Q. H., Ge, H. Q., Ye, C. P., Liu, Z. M., & Su, K. X. (2005). Advances in homogeneous and heterogeneous catalytic asymmetric epoxidation. Chemical Reviews, 105(5), 1603-1662. [CrossRef]
  • 10. Pereira, C., Silva, A. R., Carvalho, A. P., Pires, J., & Freire, C. (2008). Vanadyl acetylacetonate anchored onto amine-functionalised clays and catalytic activity in the epoxidation of geraniol. Journal of Molecular Catalysis A: Chemical, 283(1-2), 5-14. [CrossRef]
  • 11. Cardona, Y., Korili, S. A., & Gil, A. (2023). Use of clays and pillared clays in the catalytic photo degradation of organic compounds in aqueous solutions. Catalysis Reviews, 1-48. [CrossRef]
  • 12. Kashif, M., Yuan, M., Su, Y., Heynderickx, P. M., & Memon, A. (2023). A review on pillared clay-based catalysts for low-temperature selective catalytic reduction of NOx with hydrocarbons. Applied Clay Science, 233, Article 106847. [CrossRef]
  • 13. Pizarro, A. H., Molina, C. B., Rodriguez, J. J., & Epron, F. (2015). Catalytic reduction of nitrate and nitrite with mono-and bimetallic catalysts supported on pillared clays. Journal of Environmental Chemical Engineering, 3(4), 2777-2785. [CrossRef]
  • 14. B. Velde, (1992). Introduction to clay minerals, chemistry, origins, uses and environmental significance. Chapman & Hall.
  • 15. Jawad, A. H., Saber, S. E. M., Abdulhameed, A. S., Farhan, A. M., ALOthman, Z. A., & Wilson, L. D. (2023). Characterization and applicability of the natural Iraqi bentonite clay for toxic cationic dye removal: Adsorption kinetic and isotherm study. Journal of King Saud University-Science, Article 102630. [CrossRef]
  • 16. Şahin, Ö., Kaya, M., & Saka, C. (2015). Plasma-sur- face modification on bentonite clay to improve the performance of adsorption of methylene blue. Ap- plied Clay Science, 116, 46-53.
  • 17. Niu, M., Li, G., Cao, L., Wang, X., & Wang, W. (2020). Preparation of sulphate aluminate cement amended bentonite and its use in heavy metal adsorption. Journal of Cleaner Production, 256, Article 120700. [CrossRef]
  • 18. Grim, R. E. (1968). Clay Mineralogy (2 ed.) Mc- Graw-Hill.
  • 19. Ghiaci, M., Sedaghat, M. E., Aghaei, H., & Gil, A. (2009). Synthesis of CdS‐and ZnS‐modified bentonite nanoparticles and their applications to the degradation of eosin B. Journal of Chemical Technology & Biotechnology, 84(12), 1908-1915. [CrossRef]
  • 20. Farias, A. F. F., Torres, S. M., Longo, E., Jaber, M., Fonseca, M. G., Pontes, L. F. B. L., & Santos, I. M. G. D. (2021). ZnO/bentonite hybrids obtained by a simple method of synthesis and applied as catalyst for biodiesel production. In Functional Properties of Advanced Engineering Materials and Biomolecules. Springer, Cham. [CrossRef]
  • 21. Chakraborty, T., Chakraborty, A., Shukla, M., & Chattopadhyay, T. (2019). ZnO–Bentonite nano- composite: an efficient catalyst for discharge of dyes, phenol and Cr (VI) from water. Journal of Coordina- tion Chemistry, 72(1), 53-68. [CrossRef]
  • 22. Rudolph, G., Henry, M. C., & Muetterties, E. L. (1967). Bis (2, 4‐pentanedionato) Zinc. Inorganic Syntheses, 10, 74-77. [CrossRef]
  • 23. Prondzinski, N., & Merz, K. (2008). Hydrated Zinc p‐Aminobenzoate [Zn (p‐H2NC6H4COO)2(H2O)]·H2O from a Layered Zinc Hydroxide. Zeitschrift für Anorganische und Allgemeine Chemie, 634(3), 555- [27] 558. [CrossRef]
  • 24. Mahmoud, S., & Saleh, S. (1999). Effect of acid activation on the de-tert-butylation activity of some Jordanian clays. Clays and Clay Minerals, 47, 481- [28] 486. [CrossRef]
  • 25. Akçay, G., & Yurdakoc, M. K. (1999). Nonyl-and dodecylamines intercalated bentonite and illite [29] from Turkey. Turkish Journal of Chemistry, 23(1), 105-114.
  • 26. Pereira, C., Patrício, S., Silva, A. R., Magalhães, A. L., Carvalho, A. P., Pires, J., & Freire, C. (2007). Copper acetylacetonate anchored onto amine-functionalised clays. Journal of Colloid and Interface Science, 316(2), 570-579. [CrossRef]
  • 27. Pramanik, S., Das, G., & Karak, N. (2013). Facile preparation of polyaniline nanofibers modified bentonite nanohybrid for gas sensor application. RSC Advances, 3(14), 4574-4581. [CrossRef]
  • 28. Güngör, N., & Karaoğlan, S. (2001). Interactions of polyacrylamide polymer with bentonite in aqueous systems. Materials Letters, 48(3-4), 168-175. [CrossRef]
  • 29. Coşkun, S., Taşçı, Z., Ulusoy, M., & Yurdakoç, M. (2014). Catalytic conversion of carbon dioxide into cyclic carbonates by Cu (II) and Ni (II) acetylace- tonates anchored onto Siral 80. Turkish Journal of Chemistry, 38(4), 600-610. [CrossRef]