METEOROLOJİK FAKTÖRLERİN GEMİ EGZOZ GAZI EMİSYONU KONSANTRASYONLARI ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ

Mevsimsel değişikliklere bağlı olarak ortaya çıkan meteorolojik faktörler (hava sıcaklığı, yağış, nisbi nem, rüzgar ve hava basıncı), soluduğumuz havanın kalitesini (temiz veya kirli) etkilemede önemli bir etkiye sahiptir. Hali hazırda İstanbul Boğazı çevresinde yaşayan insanlar, geçiş yapan transit ve yerel gemi trafiğinden kaynaklı egzoz gazı emisyonları kirliliğine her gün maruz kalmaktadır. Gemi egzoz gazı emisyonları içinde insan sağlığına direk zararlı etkisi bulunan NOX, SOX ve PM emisyonları ile meteorolojik faktörler arasında bir ilişki olup olmadığının incelenmesi, meteorolojik faktörlerin emisyonların yayılmasındaki rolünün incelenmesi bu açıdan çok önemlidir. Bu çalışmada, İstanbul Boğazı’ndaki bir yıllık gemi trafiği emisyon konsantrasyonu (NOX, SOX ve PM) ile meteorolojik faktörler arasında bir ilişkinin olup olmadığı ortaya koyan adımsal çoklu doğrusal regresyon analizi ve korelasyon analizi yapılmıştır. Regresyon analizi sonucunda NOX, SOX ve PM emisyonları ile nisbi nem ve hava basıncı arasında “doğru orantılı” bir ilişki, yağış, rüzgar ve sıcaklık arasında “ters orantılı” bir ilişki tespit edilmiştir. Yapılan korelasyon analizinin sonucunda NOX, SOX ve PM ile yağış ve rüzgar arasında “güçlü bir ilişki” bulunmuş, hava basıncı, nisbi nem ve sıcaklık arasında “zayıf bir ilişki” bulunmuştur. Yağış ve rüzgarın arttığı zamanlarda kirletici konsantrasyonların etkisinin azalacağı, tersi durumda ise artacağı tespit edilmiştir. Yapılan tüm analizlerin sonucunda Boğaz çevresindeki hava kirliliğinin etkilerinin azaltılması için, transit ve yerel gemi trafiğinin hava basıncı ve nisbi nemin yüksek olduğu zamanlarda yavaşlatılmasının faydalı olacağı değerlendirilmiştir.

INVESTIGATION OF THE EFFECTS OF METEOROLOGICAL FACTORS ON SHIP EXHAUST GAS EMISSIONS CONCENTRATION

The meteorological factors (air temperature, precipitation, relative humidity, wind, and air pressure) that occur depending on the seasons changes have an important effect on the quality (clean or dirty) of the air we breathe. People currently living around the Istanbul Strait are daily exposed to the pollution of exhaust gas emissions from transit and domestic ship traffic. In this respect, it is very important to examine whether there is a relationship between meteorological factors and ship exhaust gas emissions (NOX, SOX, and PM) which have a direct harmful effect on human health. In this study, a stepwise multiple linear regression analysis and correlation analysis was conducted, which reveals whether there is a relationship between the meteorological parameters and the one-year ship-borne air emission results (NOX, SOX, and PM) in the Istanbul Strait. As a result of the regression analysis, a "directly proportional" relationship between NOX, SOX and PM emissions, and air pressure and relative humidity was found and “an inversely proportional” relationship was detected between precipitation, wind and temperature. As a result of the correlation analysis, a “strong relationship” was found between NOX, SOX and PM, and precipitation and wind, and a “weak relationship” between air pressure, relative humidity and temperature. It has been determined that the effect of pollutants concentrations will decrease when the precipitation and wind increase, and vice versa. As a result of all analyses, it is considered that it will be beneficial to slow down the ship traffic (transit and domestic) in times of high air pressure and relative humidity in order to reduce the effects of air pollution around the Istanbul Strait.

___

  • [1] Natural Resources Defense Council (NRDC). (2004). Harboring Pollution: Strategies to Clean up U.S. Ports. NewYork, USA: The Natural Resources Defense Council, 97p.
  • [2] The International Council on Clean Transportation (ICCT). (2007). Air Pollution and Greenhouse Gas Emissions from Ocean-Going Ships: Impacts, Mitigation Options and Opportunities for Managing Growth. Washington, USA: The International Council on Clean Transportation Publications. 102p.
  • [3] Rai, A.C., Kumar, P., Pilla, F., Skouloudis, A.N., Di Sabatino, S., Ratti, C., Yasar, A. and Rickerby, D. (2017). End-User Perspective of Low-Cost Sensors for Outdoor Air Pollution Monitoring. Science of The Total Environment, 607-608, 691-705.
  • [4] Franchini, M. and Mannucci, P.M. (2018). Mitigation of Air Pollution by Greenness: A Narritive Review. European Journal of Internal Medicine, 2018.
  • [5] World Health Organization. (2011). Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulphur dioxide for Global update 2005. Copenhagen, Denmark: WHO Regional Office for Europe. ISBN 92-890-2192-6, 484p.
  • [6] Wang, J.F., Hu, M.G., Xu, C.D., Christakos, G. and Zhao, Y. (2013). Estimation of citywide air pollution in Beijing. PLoS One, 8 (1).
  • [7] Barbulescu, A. and Barbes, L. (2017). Mathematical Modeling of Sulfur Dioxide Concentration in the Western Part of Romania. Journal of Environmental Management, 204 Part 3, 825-830.
  • [8] Biancofiore, F., Busilaccihio, M., Verdecchia, M., Tomassetti, B., Aruffo, E., Bianco, S., Di Tommaso, S., Colangelli, C., Rosatelli, G. and Di Carlo, P. (2017). Recursive Neural Network Model for Analysis and Forecast of PM10 and PM2.5. Atmospheric Pollution Research, 8, 652-659.
  • [9] Bari, MD. and Kindzierski, W.B. (2015). Fifteen-Year Trends in Criteria Air Pollutants in Oil Sands Communities of Alberta, Canada. Environmental International, 74, 200-208.
  • [10] Zafra, C., Ángel, Y. and Torres, E. (2017). ARIMA Analysis of the Effect of Land Surface Coverage on PM10 Concentrations in a High-Altitude Megacity. Atmospheric Pollution Research, 8, 660-668.
  • [11] Asl, F.B., Leili, M., Vaziri, Y., Arian, S.S., Cristaldi, A., Conti, G.O. and Ferrante, M. (2018). Health Impacts Quantification of Ambient Air Pollutants Using Airquality Model Approach in Hamadan, Iran. Environmental Research, 161, 114-121.
  • [12] Meteoroloji Genel Müdürlüğü (2019). Meteorolojik veriler, http://www.mgm.gov.tr, 2019.
  • [13] Öztürk, M. (2009). Çevre Komisyonu Raporu: Hava kirliliğini artıran sıcaklık inversiyon. Çevre ve Şehir Kütüphanesi Yayınları, Ankara, 18s.
  • [14] Müezzinoğlu, A. (2000). Hava kirliliği ve kontrolünün esasları. İzmir: Dokuz Eylül Üniversitesi Yayınları, ISBN 9756981369, İzmir, 328s.
  • [15] Özcan, N.S. and Çubukcu, K.M. (2014). Evaluation of air pollution effects on asthma disease: the case of Izmir. Procedia-Social and Behavioral Sciences, 202, 448-455.
  • [16] Dursun, Ş. ve İbrahimova, İ. (2014). Bakü Hava Kirlenmesinde SO2’nin Rolü ve Meteorolojik Olaylarla İlişkisinin Araştırılması. Avrupa Bilim ve Teknoloji Dergisi, Cilt. 1, No. 3, S. 84-91, Haziran 2014.
  • [17] Çapraz, Ö., Efe, B. and Deniz, A. (2014). Study on the association between air pollution and mortality in Istanbul, 2007-2012. Atmospheric Pollution Research, 7, 147-154.
  • [18] Zhang, H., Wang, Y., Hu, J., Ying, Q. and Hu, X.M. (2015). Relationships between meteorological parameters and criteria air pollutants in three mega cities in China. Environmental Research, 140 (2015), 242-254.
  • [19] Kunt, F. ve Dursun, Ş. (2018). Konya Merkezinde Hava Kirliliğine Bazı Meteorolojik Faktörlerin Etkisi. Ulusal Çevre Bilimleri Araştırma Dergisi, Sayı 1(1): 54-61 (2018).
  • [20] Sari, M.F. ve Esen, F. (2019). PM10 ve SO2 Konsantrasyonları ve Meteorolojik Parametrelerin Konsantrasyonlar Üzerine Etkileri. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, Cilt 8, Sayı 2, (2019), 689-697. doi: 10.28948/ngumuh.598226.
  • [21] Tokuşlu, A. (2019). İstanbul Boğazı’nda Gemi Kaynaklı Hava Emisyonlarının Analizi ve Etkilerinin Ortaya Konulması, Doktora Tezi, İstanbul Üniversitesi Deniz Bilimleri ve İşletmeciliği Enstitüsü, İstanbul, 189s.
  • [22] Nastase, G., Serban, A., Nastase, A.F., Dragomir, G. and Brezeanu, A.I. (2018). Air Quality, Primary Air Pollutants and Ambient Concentrations Inventory for Romania. Atmospheric Environment, 184, 292-303.
  • [23] Tokuşlu, A. (2020). Assessing the Environmental Costs of Port Emissions: The Case of Trabzon Port. Journal of International Environmental Application & Science, Vol. 15(2): 104-111 (2020).
  • [24] Mersin, K., Bayırhan, I. and Gazioğlu, C. (2019). Review of CO2 Emission and Reducing Methods in Maritime Transportation. Thermal Sciences, 1-8.
  • [25] Bozkurt, Z., Üzmen, Ö.Ö., Döğeroğlu, T., Artun, G. and Gaga, E.O. (2018). Atmospheric Concentrations of SO2, NO2, Ozone and VOCs in Düzce, Turkey Using Passive Air Samplers: Sources, Spatial and Seasonal Variations and Health Risk Estimation. Atmospheric Pollution Research, 9, 1146-1156, 2018.
  • [26] Bayırhan, .İ, Mersin, K., Tokuşlu, A., Gazioğlu, C. (2019). Modelling of Ship Originated Exhaust Gas Emissions in the Strait of Istanbul (Bosphorus). International Journal of Environment and Geoinformatics, 6 (3), 238-243. https://doi.org/10.30897/ijegeo.457184.
  • [27] Belusic, A., Herceg-Bulic, I. and Klaic, Z.B. (2015). Using a Generalized Additive Model to Quantify the Influence of Local Meteorology on Air Quality in Zagreb. Geofizika, 32, 47-77.
  • [28] Yin, Q., Wang, J., Hu, M. and Wong, H. (2016). Estimation of Daily PM2.5 Concentration and Its Relationship with Meteorological Conditions in Beijing. Journal of Environmental Sciences, 48, 161-168.
  • [29] Avşar, E., Alp, K. ve Toröz, İ. (2015). Balıkesir İli Burhaniye İlçesi (İskele Mahallesi) Hava Kalitesinin Değerlendirilmesi. BEÜ Fen Bilimleri Dergisi, 4, 68–82.
  • [30] Norusis, M.J. (1990). SPSS Base System User’s Guide. Chicago, USA: SPSS Inc. 520p.
  • [31] Trozzi, C. and Vaccaro, R. (1998). European Commission Under the Transport RTD Programme of the 4th Framework Programme Technical Report: Methodologies for estimating air pollutant emissions from ships. Roma, Italy:Techne.
  • [32] Trozzi, C. and Vaccaro, R. (2006). Methodologies for estimating air pollutant emissions from ships: a 2006 update. Environment & Transport 2th International Scientific Symposium including 15th conference Transport and Air Pollution, Proceedings 108, 425, 12-14 June 2006, Reims, France.
  • [33] Trozzi, C. (2010). Techne Consulting Report: Emissions estimate methodology for maritime navigation. San Antonio, Texas:Techne.
  • [34] Ulaştırma ve Altyapı Bakanlığı. (2019). Denizcilik İstatistikleri, https://atlantis.udhb.gov.tr/istatistik/istatistik_filo.aspx, 2019.
  • [35] West, J.J., Cohen, A., Dentener, F., Brunekreef, B., Zhu, T., Armstrong, B., Bell, M.L., Brauer, M., Carmichael, G., Costa, D.L., Dockery, D.W., Kleeman, M., Krzyzanowski, M., Kunzli, N., Liousse, C., Lung, S.C.C., Martin, R.V., Poschl, U., Pope, C.A., Roberts, J.M., Russell, A.G. and Wiedinmyer, C. (2016). What we breathe impacts our health: improving understanding of the link between air pollution and health. Environment Science Technology, 50, 4895–4904.
  • [36] Fan, Q.Z., Zhang, Y., Ma,W.C.,Ma, H.X., Feng, J.L., Yu, Q., Yang, X., Ng, S.K.W., Fu, Q.Y. and Chen, L.M. (2016). Spatial and seasonal dynamics of ship emissions over the Yangtze River Delta and East China Sea and their potential environmental influence. Environment Science Technology, 50, 1322–1329.
  • [37] Liu, H., Fu, M.L., Jin, X.X., Shang, Y., Shindell, D., Faluvegi, G., Shindell, C. and He, K.B. (2016). Health and climate impacts of ocean-going vessels in East Asia. Nature Climate Change, 6 (11). http://dx.doi.org/10.1038/NCLIMATE3083.
  • [38] Xie,M., Liao, J.B.,Wang, T.J., Zhu, K.G., Zhuang, B.L., Han, Y., Li, M.M. and Li, S. (2016). Modeling of the anthropogenic heat flux and its effect on regional meteorology and air quality over the Yangtze River Delta region, China. Atmospheric Chemistry and Physics, 16 (10):6071–6089. http://dx.doi.org/10.5194/acp-16-6071-2016.
  • [39] Pérez, N., Pey, J., Reche, C., Cortes, J., Alastuey, A. and Querol, X. (2016). Impact of harbour emissions on ambient PM10 and PM2.5 in Barcelona (Spain): evidences of secondary aerosol formation within the urban area. Science of the Total Environment, 571:237–250. http://dx.doi.org/10.1016/j.scitotenv.2016.07.025.
  • [40] Scerri, M., Kandler, K., Weinbruch, S., Yubero, E., Galindo, N., Prati, P., Caponi, L. and Massabo, D. (2018). Estimation of the contributions of the sources driving PM2.5 levels in a Central Mediterranean coastal town. Chemosphere, 211, 465.
  • [41] Du, W.J., Zhang, Y.R., Chen, Y.T., Xu, L.L., Chen, J.S., Deng, J.J., Hong, Y.W. and Xiao, H. (2017). Chemical characterization and source apportionment of PM2.5 during spring and winter in the Yangtze River Delta, China. Aerosol Air Quality Research, 17, 2165–2180.