FARKLI ÜRETİM YÖNTEMLERİNİN ATIK PET ESASLI ALKİD REÇİNE ÖZELLİKLERİNE ETKİSİ

Alkid reçinelerinin hazırlanması için, tek aşamalı “yağ asidi yöntemi” ve iki aşamalı “monogliserid yöntemi” olmak üzere iki ana üretim yöntemi vardır. Bu çalışmada, atık PET depolimerizasyon ara ürününün alkid reçinesi üretiminde hammadde olarak değerlendirilmesinde, her iki üretim yöntemi de kullanılmış ve farklı üretim yöntemlerinin reçinenin fiziksel/kimyasal film özellikleri ve termal özellikleri üzerine etkisi incelenmiştir. Her iki üretim yönteminde de, atık PET esaslı alkid reçineler, atık PET içermeyen referans alkid reçinelere benzer yüzey örtü özellikleri göstermiştir. Tüm reçinelerden, yumuşak (~17 könig saniyesi), esnek (15.000 mL kum), adhezyonu mükemmel (%100), darbe dayanımı yüksek (>200 kg.cm), parlak (125 GU), mükemmel asit, tuz ve çevre dayanımına sahip filmler elde edilmiştir. Bunun yanı sıra, atık PET ara ürünü kullanımına bağlı olarak, her iki üretim yönteminde de termal dayanımın, atık PET içermeyen referans alkid reçinelere göre iyileştiği ve yaklaşık 10-15oC daha yüksek sıcaklıklara kaydığı gözlenmiştir. Sonuç olarak, her iki üretim yöntemi ile gerçekleştirilen alkid reçine sentezlerinde, hammadde olarak atık PET ara ürünü kullanımı, reçinelerin yüzey örtü özellikleri üzerinde negatif bir etki göstermemiştir. Atık PET ara ürünü kullanımı durumunda, alkid reçinelerin termal dayanım özellikleri, atık PET içermeyen referans alkid reçinelere göre bir miktar artmıştır. Bu sonuçlar, muhtemelen alkid reçine sentezinde etilen glikol yerine daha büyük molekül ağırlıklı ve aromatik yapıda bir ara ürününün kullanımından kaynaklanmaktadır.

THE EFFECT OF DIFFERENT PRODUCTION METHODS ON WASTE PET BASED ALKYDE RESIN PROPERTIES

For the preparation of alkyd resins, there are two main production methods, one-step “fatty acid method” and two-step “monoglyceride method”. In this study, both production methods were used to evaluate waste PET depolymerization intermediate as raw material in alkyd resin production and the effect of different production methods on the physical/chemical film properties and thermal properties of the resin were investigated. In both production methods, waste PET based alkyd resins showed similar surface coating properties with reference alkyd resins not containing waste PET. Soft (~17 könig seconds), flexible (~15.000 mL sand), having excellent adhesion property (100%), with high impact resistance (> 200 kg.cm), bright (125 GU), with excellent acid, salt and environment resistance films were obtained. In addition, due to the use of waste PET intermediate, it was observed that thermal strength improved in both production methods compared to reference alkyd resins not containing waste PET and shifted up to higher temperatures of about 10-15°C. As a result, the use of waste PET intermediate as a raw material in alkyd resin syntheses carried out by both production methods did not have a negative effect on the surface coating properties of the resins. In the case of the use of waste PET intermediate, the thermal strength properties of the alkyd resins increased slightly compared to the reference alkyd resins not containing waste PET. These results are probably due to the use of intermediate with larger molecular weight and aromatic structure instead of ethylene glycol in alkyd resin synthesis

___

  • [1] Farah, S., Kunduru, K. R., Basu, A., Domb, A. J., (2015), Molecular Weight Determination of Polyethylene Terephthalate. In: Poly(Ethylene Terephthalate) Based Blends, Composites and Nanocomposites. pp. 143-165. William Andrew Publishing: New York
  • [2] Farahat, M.S., (2002), Mechanical characteristics of modified unsaturated polyester resins derived from poly(ethylene terephthalate) waste, Polym. Int., 51, 183-189
  • [3] Pimpan, V., Sirisook, R., Chuayjuljit, S.,(2003), Synthesis of unsaturated polyester resin from postconsumer PET bottles: effect of type of glycol on characteristics of unsaturated polyester resin, J. Appl. Polym. Sci., 88, 788-792
  • [4] Nikles, D.E., Farahat, M.S., (2005), New motivation for the depolymerization products derived from poly(ethylene terephthalate) (PET) waste: A review, Macromol. Mater. Eng., 290, 13-30
  • [5] Geyer, R, Jambeck, J.R., Law, K.L.,(2017), Plastics, production, use, and fate of all plastics ever made, Sci. Adv, 3 (7), e1700782
  • [6] Paszun, D., Spychaj, T.,(1997), Chemical recycling of poly(ethylene terephthalate), Ind. Eng. Chem. Res., 36, 1373-1383
  • [7] Vaidya, U.R., Nadkarni, V.M.,(1987), Unsaturated polyester resins from poly(ethylene terephthalate) waste: Synthesis and characterization, Ind. Eng. Chem. Res., 26, 194-198
  • [8] Suh, D.J., Park, O.O., Yoon, K.H., (2000), The properties of unsaturated polyester based on the glycolyzed poly(ethylene terephthalate) with various glycol compositions, Polym., 41, 461-466
  • [9] Öztürk, Y., Güçlü, G.,(2004), Unsaturated polyester resins obtained from glycolysis products of waste PET”, Polym. – Plast. Tech. Eng., 43, 1539-1552
  • [10] Kacperski, M., Spychaj, T., (1999), Rigid polyurethane foams with poly (ethylene terephthalate)/triethanolamine recycling products, Polym. Adv. Tech., 10, 620-624
  • [11] Shamsi, R., Abdouss, M., Sadeghi, G.M., Taromi, F.A.,(2009), Synthesis and characterization of novel polyurethanes based on aminolysis of poly(ethylene terephthalate) wastes, and evaluation of their thermal and mechanical properties, Polym. Int., 58, 22-30
  • [12] Acar, I., Orbay, M., (2011), Aminoglycolysis of waste poly(ethylene terephthalate) (PET) with diethanolamine (DEA) and evaluation of the products as polyurethane surface coating materials, Polym. Eng. Sci., 51, 746-754
  • [13] Ertaş, K., Güçlü, G., (2005), Alkyd resins synthesized from glycolysis products of waste PET, Polym. – Plast. Tech. Eng., 44, 783-794
  • [14] Güçlü, G., (2010), Alkyd resins based on waste PET for water-reducible coating applications, Polym. Bull., 64, 739-748
  • [15] Acar, I., Bal, A., Güçlü, G., (2012), The use of intermediates obtained from aminoglycolysis of waste PET for synthesis of water-reducible alkyd resin, Canadian J. .Chem., 91, 357-363
  • [16] Saravari, O., Phapant, P., Pimpan, V., (2005), Synthesis of water-reducible acrylic–alkyd resins based on modified palm oil, J. App. Polym. Sci., 96, 1170-1175
  • [17] Patton, T.C., (1962), Alkyd Resin Technology, John Wiley and Sons, New York
  • [18] ASTM D1639-90, (1996), Standard test method for acid value of organic coating materials, ASTM International, West Conshohocken, PA
  • [19] ASTM E222-17, (2017), Standard test methods for hydroxyl groups using acetic anhydride acetylation, ASTM International, West Conshohocken, PA
  • [20] Mizutani, T., Arai, K., Miyamoto, M., Kimura, Y., (2006), Application of silica-containing nano-composite emulsion to wall paint: A new environmentally safe paint of high performance, Prog. Org. Coat., 55, 276-283
  • [21] Brandrup, J., Immergut, E.H., (1989), Polymer Handbook, Third edition, Wiley, New York
  • [22] Jones, F.N., (2003), Alkyd resins, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2, 429-446
  • [23] Acar, I., Bal, A., Güçlü, G., (2009), Atık PET’in eşzamanlı glikoliz-aminoliz reaksiyonundan elde edilen ara ürünlerin alkid reçinelerinin üretiminde kullanımı, Katı Atık ve Çevre Dergisi, 76, 38-45
  • [24] Bulak, E., (2011), Atık poli(etilen tereftalat)’ın aminolizi ve aminoliz ürünlerinin karakterizasyonu, Yüksek Lisans Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği Anabilim Dalı
  • [25] Yürekli, Ş.,(1995), Reçine ve Boya Teknolojisi, 1.Cilt, Kimya Mühendisleri Odası, İstanbul
  • [26] Duce, C., Della Porta, V., Tiné, M. R., Spepi, A., Ghezzi, L., Colombini, M. P., & Bramanti, E.,(2014), FTIR study of ageing of fast drying oil colour (FDOC) alkyd paint replicas. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 130, 214-221
  • [27] Hayes, P. A., Vahur, S., Leito, I.,(2014), ATR-FTIR spectroscopy and quantitative multivariate analysis of paints and coating materials. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 133, 207-213
  • [28] http://www2.ups.edu/faculty/hanson/Spectroscopy/IR/IRfrequencies.html
  • [29] https://www.chem.ucla.edu/~bacher/General/30BL/IR/ir.html
  • [30] Ploeger, R., Scalarone, D., Chiantore, O., (2008), The characterization of commercial artists’ alkyd paints, J. Cult. Herit., 9(4), 412-419
  • [31] Güçlü, G., Orbay, M., (2009), Alkyd resins synthesized from postconsumer PET bottles, Prog. Org. Coat., 65, 362-365
  • [32] Bulak, E., Acar, I., (2014), The use of aminolysis, aminoglycolysis and simultaneous aminolysis-hydrolysis products of waste PET for production of paint binder, Polym. Eng. Sci., 54, 2273-2281
  • [33] Tuna Ö., Bal A., Güçlü G.,(2013), Investigation of the effect of hydrolysis products of post-consumer PET bottles on the properties of alkyd resins, Polym. Eng. Sci., 53, 176-182