BİR BİNEK ARAÇ AYDINLATMA ELEMANINDA DOĞAL FREKANSLARIN FARKLI TEST SICAKLIĞINA BAĞLI DEĞİŞİMİNİN İNCELENMESİ

Bu çalışmada, %40 talk katkılı polipropilenden (PP TD40) imal edilmiş bir binek araç aydınlatma elemanını gövdesinin elektrodinamik sarsıcı kullanılarak doğal frekans taraması yapılmıştır. Testler 23 °C, 70 °C ve -10 °C farklı test sıcaklıklarında gerçekleştirilmiştir. Bu testlerin çıktısı olan zamana bağlı ivme grafikleri “Hızlı Fourier Dönüşümü” yöntemi yardımı ile frekansa bağlı ivme grafiklerine dönüştürülmüştür. Yarım güç metodu kullanılarak bu grafiklerden gövdenin doğal frekansları ve bu frekanslardaki sönüm oranları hesaplanmıştır. Ardından hesaplanan sönüm oranları Ansys yazılımına girilerek sonuçlar karşılaştırılmıştır. Karşılaştırma sonucunda test ile analiz sonuçları arasında korelasyon en fazla %11,3 ve en az %0,26 olmuştur.

INVESTIGATION OF NATURAL FREQUENCY CHANGE DEPENDING ON THE DIFFERENT TEST TEMPERATURES IN PASSENGER CAR LIGHTING ELEMENTS

In this study, natural frequency scanning of a passenger vehicle lighting housing made of 40% talc mixed polypropylene (PP TD40) was performed by using electrodynamic shaker. Tests were performed at different test temperatures of 23 °C, 70 °C and -10 °C. The time-dependent acceleration graphs of these tests have been converted to frequency-dependent acceleration graphs with the aid of the "Fast Fourier Transformation" method. The natural frequencies of the part and the damping rates at these frequencies were calculated from these graphs using the half power method. The calculated damping rates for each resonance frequency were then entered into the Ansys software and the results were compared. The correlation between the results of the analysis in comparison with the test results were 11.3% and a maximum of at least 0.26%.

___

  • [1] Schrader, C. D., (2006). Dynamic structural simulation of the SAE J577 vibration test, SAE Technical Paper Series, doi: 10.4271/2006-01-048.
  • [2] Elkhatib, F. ve Poorman, T.,(2018) Resonant frequency prediction of automotive lamps, SAE Technical Paper Series, doi: 10.4271/2007-01-0603.
  • [3] Xie, K. I.,(2007) Automotive light assembly failure detection, Yüksek Lisans Tezi, Queen’s University, Ontario, Kanada.
  • [4] Çolakoğlu, M.,(2006), Damping and vibration analysis of polyethylene fiber composite under varied temperature, Turkish Journal of Engineering and Enviromental Sciences, 30, 6, 351-357.
  • [5] Ryu, K., ve Yi, H., (2018), Wire mesh dampers for semi-floating ring bearings in automotive turbochargers: measurements of structural stiffness and damping parameters, Energies, 11(4),doi: 10.3390/en11040812.
  • [6] Doh, J., Kim, S.-W., ve Lee, J., (2017), Reliability assessment on the degredation properties of polymers under operating temperature and vibration conditions, Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 232(13), 1782-1798, doi:10.1177/0954407017735263.
  • [7] Dippel, B., Johlitz, M., ve Lion, A., (2014), Thermo-mechanical couplings in elastomers – experiments and modelling, Journal of Applied Mathematics and Mechanics, 95(11), doi: 10.1002/zamm.201400110
  • [8] Pandiyanayagam, G., Bardia, P. ve Patil Y.,(2011), Experimental and modelling studies towards random vibration, SAE Technical Paper Series, doi: 10.4271/2011-26-0118.
  • [9] Chowdhury, I. ve Dasgupta, P. S.,(2003), Computation of rayleigh damping coefficients for large systems, The Electronic Journal of Geotechnical Engineering, 8, Bundle 8C.
  • [10] Limaye, G., (2013), High temperature vibration fatigue life prediction and high strain rate material characterization of lead-free solders, Yüksek Lisans Tezi, Auburn University, Alabama, ABD.
  • [11] He, J. ve Fu Z. F., (2001), Modal analysis, Butterworth-Heinemann.
  • [12] Rao, S., (2011), Mekanik titreşimler (Mechanical vibrations), 64, Pearson Education Inc, Prentice Hall.
  • [13] Maia, S., He, L. Ve Skingle T. U., (1997), Theoretical and experimental modal analysis, Research Studies Press Ltd, England, 468pp.