TURP TOHUMLARININ TUZLU KOŞULLAR ALTINDAKİ ÇİMLENME VE FİDE BÜYÜMESİNE BAZI BİTKİ BÜYÜME DÜZENLEYİCİSİ ÖN UYGULAMALARININ ETKİLERİ

Tuzlu koşullar altında turp’un tohum çimlenmesi ve fide büyümesine (taze ağırlık, hipokotil yüzdesi, radikula ve hipokotil uzaması) gibberellik asit, kinetin, benziladenin, etilen, triakontanol, 24-epibrassinolit ve poliaminlerin (kadaverin, putressin, spermidin, spermin) tek başına ve kombinasyon halindeki etkileri araştırılmıştır. Tek başına büyüme düzenleyicisi ön uygulamalarının büyük bir çoğunluğu 0.25 ve 0.30 m tuzluluğun çimlenme ve hipokotil yüzdesi ile taze ağırlık üzerindeki olumsuz etkisini ortadan kaldırmada başarılı olurken, radikula ve hipokotil uzaması üzerinde ekseriyetle başarısız olmuşlardır. Dahası, söz konusu büyüme düzenleyicileri 0.35 m tuzluluğun bu parametreler üzerindeki engelleyici etkisini hafifletmede ise son derece etkisiz olmuşlardır. Diğer yandan, kombinasyon ön uygulamalarının büyük bir çoğunluğu 0.35 m tuzluluğun çimlenme yüzdesi ve taze ağırlık üzerindeki olumsuz etkisini ortadan kaldırmada başarılı olurken, çalışılan diğer parametreler üzerinde ise çoğunlukla etkisiz olmuşlardır.

THE EFFECTS OF PRETREATMENTS OF SOME PLANT GROWTH REGULATORS ON GERMINATION AND SEEDLING GROWTH OF RADISH SEEDS UNDER SALINE CONDITIONS

The effects of gibberellic acid, kinetin, benzyladenine, ethylene, triacontanol, 24-epibrassinolide and polyamines(cadaverine, putrescine, spermidine, spermine), alone or in combinations, on seed germination and seedling growth(fresh weight, hypocotyl percentage, radicle and hypocotyl elongation) of radish under saline conditions werestudied. Although many of the growth regulator pretreatments alone carried out in overcoming of the negativeeffect of 0.25 and 0.30 m salinity on the germination and hypocotyl pecentage or fresh weight, they were mostlyunsuccessful on the radicle and hypocotyl elongation. Moreover, the mentioned growth regulators were extremelyineffective in alleviation of the inhibitive effect of 0.35 m salinity on these parameters. On the other hand, many ofthe combination pretreatments carried out in overcoming of the negative effect of 0.35 m salinity on thegermination percentage and fresh weight, while they were mostly ineffective on the other parameters studied.

___

  • [1] Dudley, L.M., “Salinity in the Soil Environment”. In: Pessarakli, M., (ed.), Handbook of Plant and Crop Stres, Dekker, New York, 13-30 (1992).
  • [2] Zhu, J.K., “Over expression of a delta-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice”, Trends Plant Sci., 6: 66-72 (2001).
  • [3] Woods, S.A., “Salinity Tolerance of Ornamental Trees and Shrubs.”http://www.agric.gov.ab.ca./sustain/soil/salinity/ (1996).
  • [4] Kabar, K. and Baltepe Ş., “Alleviation of salinity stress on germination of barley seeds by plant growth regulators“, T.J. Biol., 11: 108-117 (1987).
  • [5] Gulzar, S. and Khan, M.A., “Alleviation of salinity–induced dormancy in perennial grasses“, Biol. Plant., 45: 617-619 (2002).
  • [6] Dash, M. and Panda, S.K., “Salt stress induced changes in growth and enzyme activities in germinating Phaseolus mungo seeds“, Biol. Plant., 44: 587-589 (2001).
  • [7] Ashraf, M.Y., Sarway, G., Ashraf, M., Afaf, R. and Sattar, A., “Salinity induced changes in alpha amylase activity during germination and early cotton seedling growth,“ Biol. Plant., 45: 589-591 (2002).
  • [8] El-Mashad, A.A. and Kamel, E.A., “Amelioration of NaCI stress in Pisum sativum Linn,“ Indian Journal of Exp. Bot., 39: 469-475 (2001).
  • [9] Öztürk, M., Gemici, M., Özdemir, F. ve Keyikçi, N., “Tohum Çimlenmesi Olayında Bitkisel Hormonların ve Çimlenme Stimülatörlerinin Tuz Stresini Azaltmadaki Rolü“, XII. Ulusal Biyoloji Kongresi, Edirne (1994).
  • [10] Kabar, K., “Alleviation of salinity stress by plant growth regulators on seed germination,“ J. PlantPhysiol., 128: 179-183 (1987).
  • [11] Khan, M.A. and Ungar, I.A., “Alleviation of salinity stress and the response to temperature in two seed morphs of Halopyrum mucronatum (Poaceae)“, Aust. J. Bot., 49: 617-619 (2001).
  • [12] Khan, A.A., Andreoli, C. and Kuo, C.G., “Role of Ethlene Biosynthesis in Seed Germination and Stand Establishment under Stress“, In: Adaptation of Foot Crops to Temperature and Water Stress, Proceedings of an International Symposium, Taiwan (1993).
  • [13] Sasse, J.M., Smith, R. and Hudson, I, “Effect of 24-epibrassinolide on germination of seeds of Eucalyptus camaldulensis in saline conditions“, Proc. Plant Growth Regul. Soc. Am., 22: 136-141 (1995).
  • [14] Özdemir, F, Bor, M., Demiral, T. ve Türkan, İ., “Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress“, Plant Growth Regul., 42: 203-211 (2004).
  • [15] Ali, R.M., “Role of putrescine in salt tolerance of Atropa belladonna plant“, Plant Sci., 152: 173-179 (2000).
  • [16] Mutlu, F. ve Bozcuk, S., “Tuzlu koşullarda ayçiçeği tohumlarının çimlenmesi ve erken büyüme üzerinedışsal spermin’in etkileri“, T.J. Bot., 24: 635-643 (2000).
  • [17] Muthuchelian, K., Murugan, C., Harigovindan, R., Nedunchezhian, N. and Kulandaivelu, G.,“Ameliorating effect of triacontanol on salt stressed Erythrina variegate seedlings“. Changes incomposition and activities of chloroplast, Biol. Plant., 38: 245-251 (1996).
  • [18] Braun, J.W. and Khan, A.A., “Alleviation of salt salinity and high temperature stress by plant growth regulators permeated into lettuce seeds via acetone“, J. Am. Soc. Hort. Sci., 101: 716-721 (1976).
  • [19] Boucaud, J. and Ungar, I.A., “Hormonal control of germination under saline conditions of three halophyte taxa in genus Sueda“, Physiol. Plant., 36: 197-200 (1976).
  • [20] Ghoulam, C. and Fores, K., “Effect of salinity on seed germination and early seedling growth of sugar beet (Beta vulgaris L.)“, Seed Sci. Tech., 29: 357-364 (2001).
  • [21] Datta, K.S., Varma, S.K., Angrish, R., Kumar, B. and Kumari, P., “Alleviation of salt stress by plant growth regulators in Triticum aestivum L.,“ Biol. Plant., 40: 269-275 (1998).
  • [22] Cuartero, J. and Fernandez-Munoz, R., “Tomato and salinity,“ Sci. Hort., 78: 83-125 (1999).
  • [23] Muthukumarasamy, M. and Panneerselvam, R., “Effect of triadimefon and salinity stress on carbohydrate metabolism in radish seedlings“, Indian J. Plant Physiol., 2: 242-244 (1997).
  • [24] Yürekli, F., Türkan, İ, Porgali, Z.B. ve Topçuoğlu, F., “Indoleacetic acid, gibberellic acid, zeatin, and abscisic acid levels in NaCI-treated tomato species differing in salt tolerance“, Israel J. Plant Sci., 49: 269-278 (2001).
  • [25] Yürekli, F., Porgali, Z.B. ve Türkan, İ., “Variations in abscisic acid, indole-3-acetic acid, gibberellic acid and zetin concentrations in two bean species subjected to salt stress“, Acta Biol. Crac. Ser. Bot., 46: 201-212 (2004).
  • [26] Kaur, S., Gupta, A.K. and Kaur, N., “Gibberellin A3 reverse the effect of salt stress in chickpea (Cicer arietinum L.) seedlings by enhancing amylase activity and mobilization of starch in cotyledons“, Plant Growth Regul., 26: 85-90 (1998).
  • [27] Khan, A.A., “Cytokinin-inhibitor antagonism in the hormonal control of alpha amylase synthesis and growth in barley seed“, Physiol. Plant., 22: 94-103 (1969).
  • [28] Jones, R.L., “Ethylene enhanced release of alpha amylase from barley eleurone cells“, Plant Physiol., 43:442-444 (1968).
  • [29] Tekin, F. ve Bozcuk, S., “Helianthus annuus L. var. Santefe (Ayçiçeği) tohumlarının çimlenmesi ve erken büyüme üzerine tuz ve dışsal putressin’in etkileri,“ T. J. Biol., 22: 331-340 (1998).
  • [30] Prusakova, D.S., Chizhova, S.I. and Khripach, V.A., “Resistance to lodging and yielding capacity of cereals under the effect of brassinosteroids“, Sel’ Skokhozyaistvennaya Biol., 93-97 (1995).
  • [31] Nieman, R.H., “Expansion of bean leaves and its suppression by salinity“, Plant Physiol., 40: 156-161 (1965).
  • [32] Liu, P.D.W. and Loy, J.B., “Action of gibberellic acid on cell proliferation in the subapical shoot meristem of Watermelon seedlings,“ Am. J. Bot., 63: 700-704 (1976).
  • [33] Werner, T., Motyka, V., Strnad, M. and Schmulling, T., “Regulation of plant growth by cytokinin“, Proc. Natl. Acad. Sci. USA., 98: 10478-10492 (2001).
  • [34] Hu, YX., Bao, F. and Li, J.Y., “Promotive effects of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis,“ The Plant J., 24: 639-701 (2000).
  • [35] Kaur-Sawhney, R., Flores, H.E. and Galston, A.W., “Polyamine-induced DNA synthesis and mitosis in oat leaf protoplast“, Plant Physiol., 65: 368-371 (1980).
  • [36] Tal, M., “Physiology of polyploid plants: DNA, RNA, protein and abscisic acid in autotatraploid and diploid tomato under low and high salinity“, Bot. Gaz., 138: 119-122 (1977).
  • [37] Prakash, L., Dutt, M. and Prathapasenan, G., “NaCI alters contents of nucleic acids, protein, polyamines and seedling growth of rice (Oryza sativa L.), “ Aust. J. Plant Physiol., 15: 769-776 (1988).
  • [38] Akazawa, T., Mitsui, T. and Hawashi, M., “Recent progress in Alpha Amylase Biosynthesis“. In: Preiss, J, (ed.), The Biochemistry of Plants, San Diego, Academic Press (1988).
  • [39] Ananiev, E.D., Karagyozov, L.K. and Karanov, E.N., “Effect of cytokinins on ribosomal RNA gene expression in excised cotyledons of Cucurbita pepo L.“, Planta, 170: 370-378 (1987).
  • [40] Bajguz, A., “Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chrorellavulgaris“, Plant Physiol. Biochem., 38: 209-215 (2000).
  • [41] Palavan, N. and Galston, A.W., “Polyamine biosynthesis and titer during developmental stages of Phaseolus vulgaris“, Physiol. Plant., 55: 438-444 (1982).
  • [42] Taylor, J.S. and Wareing, P.F., “The effect of stratification on the endogenous levels of gibberellins and cytokinins in seed of drauglas-fir (Pseudotsuga menziesii) (Mirb.) Franco) and sugar pine (Pinus lambertiana Dougl.)“, Plant Cell Environ., 2: 165-172 (1979).
  • [43] Khan, A.A., “Cytokinins: permissive roles in seed germination“, Science, 171: 853-859 (1971).
  • [44] Zapata, P.J., Maria Serrano, M., Teresa Pretel, M., Asuncian Amaros, M. and Botella, A., “Polyamines and ethylene changes during germination of different plant species under salinity“, Plant Sci., 167: 781-788 (2004).
  • [45] Basu, R., Maitra, N. and Ghosh, B., “Salinity results in polyamine accumulation in early rice (Oryza sativa L.) seedlings“, Aust. J. Plant Physiol., 15: 777-786 (1988).
  • [46] Schmidt, J., Altmann, T. and Adam, G., “Brassinosteroids from seeds of Arabidopsis thaliana“,Phytochem., 45: 1325-1327 (1997).