SİMETRİK AĞIRLIK İSTİNAT DUVARLARININ OPTİMUM TASARIMI

İstinat duvarları, inşaat mühendisliğindeki önemli uygulamalardan birisidir. İstinat duvar türlerinden birisi olan ağırlık istinat duvarları özellikle duvar yüksekliğinin fazla olmadığı durumlarda yaygın olarak kullanılmaktadır. Ağırlık istinat duvarlarında duvar kesitinde oluşan kesme kuvvetleri ve eğilme momentleri duvar malzemesi tarafından karşılanabildiğinden, duvar içerisinde donatı gereksinimi oluşmamakta ve daha ekonomik tasarımlar yapılabilmektedir. İstinat duvarlarının tasarımı için birçok göçme modu, tasarım gereksinimleri ve kısıtlarının birlikte düşünülmesi gerektiğinden, bu problem önemli optimizasyon problemlerinden birisi haline gelmektedir. Bu çalışmada, simetrik ağırlık istinat duvarlarının optimum tasarımı için sezgisel metotlardan birisi olan yapay arı koloni (ABC) algoritması kullanılmıştır. Farklı duvar yükseklikleri ve kullanılan duvar malzemesinin karakteristik dayanımları için örnekler ele alınmış ve bu karakteristiklerin kesit geometrisine etkileri incelenerek sonuçlar tartışılmıştır.

OPTIMUM DESIGN OF THE SYMMETRICAL GRAVITY RETAINING WALLS

Retaining walls are one of the important applications in civil engineering. When the height of the wall is not too high, the gravity retaining walls, which are one of the retaining wall types, are widely used. Since the shear and bending moments in the wall sections are carried by the wall material in the gravity retaining walls, there is no need for reinforcement in the wall and more economical wall design can be made. Because many failure modes, design requirements and design constraints need to be considered together for the design of retaining walls, the problem has to be considered as an optimization problem. In this study, the artificial bee colony (ABC) algorithm, which is one of the heuristic methods, is used for the optimum design of symmetrical gravity retaining walls. Examples of different heights of wall and characteristics strengths of the used wall material are handled, and the effects of these characteristics on the cross-section geometry are investigated and the results are discussed.

___

  • [1] Karaboga, D., (2005). An idea based on honey bee swarm form numerical optimization. Technical Report TR06, Erciyes University, Turkey.
  • [2] Karaboga D., Basturk B., (2008). On the Performance of Artificial Bee Colony (ABC) Algorithm. Applied Soft Computing, 8(1), 687-697.
  • [3] Bolaji A.L., Khader A.T., Al-Betar M.A., and Awadallah M.A., (2013). Artificial Bee Colony Algorithm, Its Variants and Applications: A Survey. Journal of Theoretical and Applied Information Technology, 47(2), 434-459.
  • [4] Sheikholeslami, R., Khalili, B.G., Sadollah, A., and Kim, J.H., (2016). Optimization of Reinforced Concrete Retaining Walls via Hybrid Firefly Algorithm with Upper Bound Strategy. KSCE Journal of Civil Engineering, 20(6), 2428-2438.
  • [5] Gandomi, A.H., Kashani, A.R., Roke, D.A., and Mousavi, M., (2017). Optimization of Reinforced Wall Design Using Evolutionary Algorithms, Structural and Multidisciplinary Optimization. 55(3), 809-825.
  • [6] Aydogdu, I., (2017). Cost optimization of reinforced concrete cantilever retaining walls under seismic loading using a biogeography-based optimization algorithm with Levy flights. Engineering Optimization, 49(3), 381-400.
  • [7] Ukritchon, B., Chea, S., and Keawsawasvong, S., (2017). Optimal Design of Reinforced Concrete Cantilever Retaining Walls Considerinh the Requirement of Slope Stability. KSCE Journal of Civil Engineering, 21(7), 2673-2682.
  • [8] Dağdeviren, U., Kaymak, B., (2018). Investigation of Parameters Affecting Optimum Cost Design of Reinforced Concrete Retaining Walls using Artificial Bee Colony Algorithm. Journal of the Faculty of Engineering and Architecture of Gazi University, 33(1), 239-253.
  • [9] Talatahari, S., Sheikholeslami, R., Shadfaran, M., and Pourbaba, M., (2012). Optimum Design of Gravity Retaining Walls Using Charged System Search Algorithm. Mathematical Problems in Engineering, Volume 2012, Article ID 301628, 1-10.
  • [10] Talatahari, S., Sheikholeslami, R., (2014). Optimum Design of Gravity and Reinforced Retaining Walls Using Enhanced Charged System Search Algorithm. KSCE Journal of Civil Engineering, 18(5), 1464-1469.
  • [11] Sadoğlu, E., (2014). Design Optimization for Symmetrical Gravity Retaining Walls. Acta Geotechnica Slovenica, 11(2), 71-79.
  • [12] Karaboga D., Basturk B., (2007). Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems, LNCS: Advances in Soft Computing: Foundations of Fuzzy Logic and Soft Computing. Vol: 4529/2007, 789-798, Springer- Verlag.
  • [13] Karaboga D., Akay B., (2011). A Modified Artificial Bee Colony (ABC) Algorithm for Constrained Optimization Problems. Applied Soft Computing, 11(3), 3021-3031.
  • [14] Venkatramaiah C., (2006). Geotechnical Engineering. Third Edition. New Age International Publishers.
  • [15] TS 500-2000, (2000). Betonarme Yapıların Tasarım ve Yapım Kuralları. Türk Standardları Enstitüsü.
  • [16] Das B.M., (2016). Principles of Foundation Engineering. Eighth Edition. Cengage Learning.