HİDROLİK İLETKENLİK İLE İNCE TANELİ ZEMİNLERİN FİZİKSEL ÖZELLİKLERİ ARASINDAKİ İLİŞKİNİN ARAŞTIRILMASI

Hidrolik iletkenlik mühendislik jeolojisi ile ilgili projelerde suyun zemin taneleri arasındaki iletimininsayısal ifadesi olarak 19. yüzyılın son dönemlerinden beri kullanılmaktadır. Hidrolik iletkenliğindoğrudan belirlenebilmesi için sabit ve düşen seviyeli permeabilite deneyleri örneklerin tane boyudağılımları ile uygun olacak şekilde yaygın olarak tercih edilmektedir. Sabit ve düşen seviyelipermeabilite deneylerinin yapılabilmesi için arazi çalışmalarının gerçekleştirilmesi ve örselenmemişörnek alınması gerekmektedir. Örnekleme çalışmalarının zaman alıcı ve zor olması nedeniyle birçokaraştırmacı tarafından hidrolik iletkenlik değerinin zemin malzemelerinin fiziksel özelliklerininkullanılarak belirlenmesine yönelik olarak görgül eşitlikler önerilmiştir. Önerilen bu görgül eşitliklerinbirçoğu ise boşluk oranı, porozite, özgül yüzey, Atterberg limitleri ve tane boyu dağılım eğrisi ileilişkili parametreleri içermektedir. Araştırmacılar tarafından önerilen bu eşitlikler zeminmalzemelerinin fiziksel özellikleri ile ilgili sınırlamalara sahip olmasından dolayı özellikle ince tanelizemin malzemelerinin hidrolik iletkenlik değerlerinin tahmininde kullanılamamaktadır. Bu çalışmakapsamında hidrolik iletkenlik ile zeminlerin fiziksel özellikleri arasındaki ilişkinin ortayakonulabilmesi için arazi çalışmaları sırasında 15 farklı lokasyondan alınan örnekler üzerinde düşenseviyeli permeabilite deneyleri, tane boyu dağılım analizleri, Atterberg limitleri deneylerigerçekleştirilmiştir ve tane boyu indeksi değerleri hesaplanmıştır. Deneysel çalışmalar sonucunda eldeedilen veriler kullanılarak yapılan istatistiksel analizlerde çakıl tane boyu oranı %10’un altında olanörneklerin hidrolik iletkenlikleri ile tane boyu indeksi değerleri arasında istatistiksel olarak anlamlı(R2=0,94) bir ilişkinin olduğu belirlenmiştir.

INVESTIGATION OF THE RELATIONSHIP BETWEEN HYDRAULIC CONDUCTIVIY AND PHYSICAL PROPERTIES OF FINE GRAINED SOILS

Hydraulic conductivity has been used for engineering geology related projects since last decades of19th century in order to estimate the ability of soils to transportation of water through soil particles.Constant and falling head test are widely used to directly measure the hydraulic conductivity values ofsoil samples based on their grain size distributions. In order to perform constant and falling head test, field investigation and undisturbed sampling works should be performed. In order to overcome the time consuming and difficult processes of field works and undisturbed sampling, numerous empirical equations have previously proposed based on physical properties of soil materials to estimate the hydraulic conductivity of soil samples. Most of these equations are based on void ratio, porosity, specific surface area, Atterberg limits and some parameters related with grain size distribution. These equations are not applicable to estimate particularly hydraulic conductivity of fine grained soils due to limitations regarding with physical properties of soil samples. In this study, in order to describe the relationship between hydraulic conductivity and physical properties of soils, tests including falling head methods and measurements of grain size distributions and Atterberg limits were performed on 15 soil samples which collected from different locations during field studies. Considering the results obtained from laboratory test, it can be concluded that there is statistically significant relationship (R2=0.94) between hydraulic conductivity and grain size index values of samples which contains gravel size materials lower than %10.

___

  • [1] Darcy, H., (1896), Les fountaines publiques de la Ville de Dijon. Victor Dalmont, Paris, 77.
  • [2] Hazen, A., (1892), Experiments upon the purification of sewage and water at the Lawrence Experiment Station, Massachusetts State Board of Health 23rd Annual Report, 428-434.
  • [3] Hazen, A., (1911), Discussion of Dams on sand foundations by A. C. Koenig. Trans. Am. Soc. Vic. Eng., 73, 199-203.
  • [4] Taylor, D. (1948), W., Fundamentals of Soil Mechanics, Wiley, New York, 97.
  • [5] Leonards, G. A., (1962), Engineering properties of soils, Foundation engineering, G. A. Leonards, ed., McGraw-Hill, New York, 241-350.
  • [6] Mansur, C. I. and Kaufman, R. I., (1962), Dewatering, Foundation engineering, G. A. Leonards, ed., McGraw-Hill, New York, 241–350.
  • [7] Terzaghi, K. and Peck, R. B., (1964). Soil Mechanics in Engineering Practice, Wiley, New York., 71-78.
  • [8] Cedergren, H. R., (1967), Seepage, Drainage and Flow Nets, Wiley, New York., 19-39.
  • [9] Lambe, T. W. and Whitman, R. V., (1969), Soil mechanics, Wiley, New York., 281.
  • [10] Holtz, R. D. and Kovacs, W. D., (1981), An introduction to geotechnical engineering, Prentice-Hall, Englewood Cliffs, N.J., 211.
  • [11] Terzaghi, K., Peck, R. B. and Mesri, G., (1996), Soil mechanics in engineering practice, Wiley, New York., 94.
  • [12] Das, B. M., (1997). Advanced soil mechanics, Taylor & Francis, Washington, D.C., 179.
  • [13] Coduto, D. P., (1999), Geotechnical engineering: Principles and Practices, Prentice-Hall, Upper Saddle River, N.J., 104.
  • [14] Erguler, Z.A. and Shakoor, A., (2009), Relative contribution of various climatic processes in disintegration of clay-bearing rocks. Engineering Geology, 108, 36-42.
  • [15] Erguler, Z.A., (2016), A quantitative method of describing grain size distribution of soils and some examples for its applications, Bulletin of Engineering Geology and the Environment, 75, 807-813.