SiAlON SERAMİKLERİNİN SİNTERLEME DAVRANIŞI VE MİKROYAPI GELİŞİMİNİ ETKİLEYEN PARAMETRELER

SiAlON seramikleri, başlangıç tozları Si3N4, AlN, Al2O3, SiO2 ve sinterlemeye yardımcı oksitler (Sm2O3, CaO, Y2O3, Yb2O3 vs.) kullanılarak uygun kompozisyon tasarımı sonrası üretilirler. SiAlON seramikleri, üstün mekanik özelliklerinden dolayı özellikle yüksek sıcaklık dayanımının istendiği uygulama alanlarında yaygın olarak kullanılmaktadırlar. SiAlON seramiklerin mekanik özelliklerinde mikroyapı önemli bir rol oynar.  SiAlON seramiklerinde mikroyapı gelişimi ve yoğunlaşma davranışı, başlangıç kompozisyonu, geçici sıvı fazın miktarı, kompozisyonu, α→b faz dönüşümü, başlangıç tozlarının spesifikasyonları, sinterleme ilaveleri türü ve ıslatma davranışı, ısıtma ve soğutma hızı, ön sinterleme koşulları, atmosfer, zaman ve sıcaklık tarafından kontrol edilmektedir. Malzeme özellikleri genellikle mikroyapıyla kontrol edilmekte ve mikroyapı da üretim prosesleri ve özellikle sinterleme aşaması tarafından kontrol edildiği için bu derleme makalede sinterleme parametreleri ve değişkenlerinin mikroyapı gelişimine etkisi açıklanmıştır.

EFFECT PARAMETERS FOR SINTERING BEHAVIOR AND MICROSTRUCTURE DEVELOPMENT OF SiAlON CERAMICS

SiAlON ceramics are produced by suitable compositional design  using Si3N4, AlN, Al2O3, SiO2 starting powders and sintering aids (Sm2O3, CaO, Y2O3, Yb2O3 etc.) to the desired effect. SiAlON ceramics are widely and preferably used in high temperature applications due to their superior mechanical properties. Microstructure is the most important determining factor in the mechanical properties of SiAlON ceramics. The microstructural evolution and densification behavior of the SiAlON ceramics are controlled by specifications of the starting powders, starting composition, type and the wetting behavior of the sintering aid additives, quantity and composition of the transient liquid phase, α→b phase transformation, heating and cooling rate, presintering conditions, sintering atmosphere, time and peak temperature. Since the material properties are generally controlled by microstructure which in turn controlled by production processes and especially the sintering stage, in this review article, the effect of sintering parameters and variables on the microstructural evolution is explained.

___

  • [1] Kijima, K., and Shirasaki, S. I., “Nitrogen self‐diffusion in silicon nitride”, The Journal of Chemical Physics, 65(7), 2668-2671 (1976).
  • [2] Thompson, D. P., “Preparation and properties of silicon nitride based materials”, Bonnell D A. Aedermannsdorf, (1989).
  • [3] Deeley, G. G., Herbert, J. M., and Moore, N. C., “Dense silicon nitride”, Powder Metallurgy, 4(8), 145-151 (1961).
  • [4]Oyama, Y., “Solid solution in the ternary system, Si3N4-AlN-Al2O3”, Japanese Journal of Applied Physics, 11(5), 760 (1972).
  • [5] Jack, K. H., and Wilson, W. I., “Ceramics based on the Si-Al-ON and related systems”, Nature, 238(80), 28-29 (1972).
  • [6] Jack, K. H., “SiAlONs and related nitrogen ceramics”, Journal of materials science, 11(6), 1135-1158 (1976).
  • [7] Hampshire, S., Park, H. K., Thompson, D. P., and Jack, K. H., “α′-SiAlON ceramics”, Nature, 274(5674), 880-882 (1978).
  • [8] Ekström, T., and Ingelström, I., “Characterization and properties of SiAlON materials”, In Proc. Int. Conf. Non-oxide Technical and Engineering Ceramics, Elsevier Applied Science, London, UK, 231-253, (1986).
  • [9] Shen, Z. J., and Nygren, M., “Laminated and functionally graded materials prepared by spark plasma sintering”, In Key Engineering Materials, 206-213, 2155-2158 (2002).
  • [10] Çalış, N., Kuşhan, Ş. R., Kara, F., and Mandal, H., “Functionally graded SiAlON ceramics”, Journal of the European Ceramic Society, 24(12), 3387-3393 (2004).
  • [11] Çalış, N., Kara, A., Kara, F., and Mandal, H., “Development of laminar type functionally graded SiAlON ceramics”, In Key Engineering Materials, 264-268, 1095-1098 (2004).
  • [12] Çalış, N. “Functionally graded SiAlON ceramics”, BSc Thesis, Anadolu University, (2002).
  • [13] Grün, R., “The crystal structure of β-Si3N4: structural and stability considerations between α-and β-Si3N4”, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 35(4), 800-804 (1979).
  • [14] Kohatsu, I., and McCauley, J. W., “Re-examination of the crystal structure of α-Si3N4”, Materials Research Bulletin, 9(7), 917-920 (1974).
  • [15] Jiang, J. Z., Kragh, F., Frost, D. J., Ståhl, K., and Lindelov, H., “Letter to the editor: Hardness and thermal stability of cubic silicon nitride”, Journal of Physics Condensed Matter, 13, L515-L520 (2001).
  • [16] Ekström, T., and Nygren, M., “SiAION ceramics”, Journal of the American Ceramic Society, 75(2), 259-276 (1992).
  • [17] Thompson, D. P., “Preparation and properties of silicon nitride based materials”, Bonnell D A. Aedermannsdorf, (1989).
  • [18] Açıkbaş, N. Ç., Teğmen, S., Özcan, S., and Açıkbaş, G., “Thermal shock behavior of αı:βı-SiAlON–TiN composites”, Ceramics International, 40(2), 3611-3618 (2014).
  • [19] Kuşhan, S. R., Uzun, I., Doğan, B., and Mandal, H., “Experimental and finite element study of the thermal conductivity of αı‐SiAlON ceramics”, Journal of the American Ceramic Society, 90(12), 3902-3907 (2007).
  • [20] Matovic, B. “Low temperature sintering additives for silicon nitride”, PhD Thesis, Stuttgart, (2003).
  • [21] Ozcan, S., Acikbas, G., Ozbay, N., Calis Acikbas, N., “The effect of silicon nitride powder characteristics on SiAlON microstructures, densification and phase assemblage”, Ceramics International, 43(13), 10057-10065 (2017).
  • [22] Mandal, H., and Açıkbaş, N. Ç., “Processing, characterization and mechanical properties of SiAlONs produced from low cost β-Si3N4 powder”, KONA Powder and Particle Journal, 30, 22-30 (2013).
  • [23] Açıkbaş, N. Ç., Kumar, R., Kara, F., Mandal, H., and Basu, B., “Influence of β-Si3N4 particle size and heat treatment on microstructural evolution of αı:βı-SiAlON ceramics”, Journal of the European Ceramic Society, 31(4), 629-635 (2011).
  • [24] Açıkbaş, N. Ç., Kara, F., and Mandal, H., “Development of αı-βı SiAlON ceramics from different Si3N4 starting powders”, Key Engineering Materials, 403, 107-108 (2009).
  • [25] Kumar, R., Açıkbaş, N. Ç., Kara, F., Mandal, H., and Basu, B., “Microstructure–mechanical properties–wear resistance relationship of SiAlON ceramics”, Metallurgical and Materials Transactions A, 40(10), 2319-2332 (2009).
  • [26] Mrotek, D., “Effect of compositional variations on the microstructural development of Ca/α-β SiAlON materials”, New Jersey, (1998).
  • [27] Calis Acikbas, N., Acikbas, G., Yaman, B., Soylu, Ş., “Talaşlı imalatta kullanılan SiAlON esaslı kesici uçların mikroyapı tasarımı”, 2. Uluslararasi Mühendislik Mimarlik ve Tasarim Kongresi, 12-13 Mayıs, Kocaeli, Türkiye, 350-351, (2017).
  • [28] Kang, L., and Joong, S., “Sintering”, Elsevier, Butterworth-Heinemann, (2005).
  • [29] Shen, Z., and Nygren, M., “Kinetic aspects of superfast consolidation of silicon nitride based ceramics by spark plasma sintering”, Journal of Materials Chemistry, 11(1), 204-207 (2001).
  • [30] Ayas, E., Kara, A., and Kara, F., “A novel approach for preparing electrically conductive α/β SiAlON-TiN composites by spark plasma sintering”, Journal of the Ceramic Society of Japan, 116(1355), 812-814 (2008).
  • [31] Xu, G. F., Zhuang, H. R., Wu, F. Y., and Li, W. L., “Microwave reaction sintering of α-β-SiAlON composite ceramics”, Journal of the European Ceramic Society, 17(5), 675-680 (1997).
  • [32] Hwang, S. L., and Chen, I. W., “Reaction hot pressing of α′‐and β′‐SiAlON ceramics”, Journal of the American Ceramic Society, 77(1), 165-171 (1994).
  • [33] Olsson, P. O., and Ekström, T., “HIP-sinteredβ-and mixedα-β SiAlONs densified with Y 2 O 3 and La 2 O 3 additions”, Journal of materials science, 25(3), 1824-1832 (1990).
  • [34] Li, H. X., Sun, W. Y., Wang, P. L., Yan, D. S., and Tien, T. Y., “The effect of GPS parameters on mechanical properties of Y—α-SiAlON ceramics”, Ceramics international, 23(5), 449-456 (1997).
  • [35] Biswas, S. K., and Riley, F. L., “Gas pressure sintering of silicon nitride—current status”, Materials chemistry and physics, 67(1), 175-179 (2001).
  • [36] Kingery, W. D., “Densification during sintering in the presence of a liquid phase”, Journal of Applied Physics, 30(3), 301-306 (1959).
  • [37] Kingery, W. D., and Narasimhan, M. D., “Densification during sintering in the presence of a liquid phase”, Journal of Applied Physics, 30(3), 307-310 (1959).
  • [38] Petzow, G., and Huppmann, W. J., “Liquid phase sintering- densification and microstructural development”, Zeitschrift für Metallkunde, 67, 579-590 (1976).
  • [39] German, R. M. “Liquid Phase Sintering”, Plenum, New York, 5 (1985).
  • [40] Brebec, G., Seguin, R., and Sella, C., “Diffusion of silicon in amorphous silica”, Acta Metall., 28(3), 327-333 (1980).
  • [41] Hampshire, S., and Jack, K. H., “The kinetics of densification and phase transformation of nitrogen ceramics”, Special Ceramics, 7, 37-49 (1981).
  • [42] Calis Acikbas N. and Acikbas, G., "Statistical Evaluation of Repeatability Analyses of SiAlON Production Process”, ISEM2016: 3rd International Symposium on Environment and Morality, Alanya, Turkey, 1072-1081 (2016).
  • [43] German, R. M., Messing, G. L., Cornwall, R. G., “Sintering Technology”, Marcel Dekker Inc., Newyork, Basel, HongKonk, (1996).
  • [44] Chen, I. W., and Rosenflanz, A., “A tough SiAlON ceramic based on α-Si3N4 with a whisker-like microstructure”, Nature, 389(6652), 701-704 (1997).
  • [45] Açıkbaş, N. Ç., and Demir, O., “The effect of cation type, intergranular phase amount and cation mole ratios on z value and intergranular phase crystallization of SiAlON ceramics”, Ceramics International, 39(3), 3249-3259 (2013).
  • [46] Açıkbaş, N. Ç., and Mandal, H., “The fluorine effect on the grain-growth of Α1: Β1-SiAlON ceramics”, Anadolu University Journal of Science and Technology A- Applied Sciences and Engineering, 17(5), 895-904 (2016).
  • [47] Açıkbaş, N. Ç., Kara, A., Turan, S., Kara, F., Mandal, H., and Bitterlich, B., “Influence of type of cations on intergranular phase crystallisation of SiAlON ceramics”, In Materials science forum, 554, 119-122 (2007).
  • [48] Pearson, R. G., “Absolute electronegativity and hardness: application to inorganic chemistry”, Inorg. Chem., 27(4), 734-740 (1988).
  • [49] Menon, M., and Chen, I. W., “Reaction densification of α′‐SiAlON: 1, wetting behavior and acid‐base reactions”, Journal of the American Ceramic Society, 78(3), 545-552 (1995).
  • [50] Menon, M., and Chen, I. W., “Reaction densification of α′‐SiAION: II, densification behavior”, Journal of the American Ceramic Society, 78(3), 553-559 (1995).
  • [51] Açıkbaş, N. Ç., “Tribolojik Uygulamalara Yönelik SiAlON Seramiklerinin Geliştirilmesi”, Doktora Tezi, Anadolu Universitesi, Fen Bilimleri Enstitüsü, (2009).
  • [52] Bošković, S., and Nickel, K. G., “Preparation and properties of α/β SiAlON composites”, In Science of Sintering, 1, 621-629 (1989).
  • [53] Rosenflanz, A., and Chen, I. W., “Kinetics of phase transformations in SiAlON ceramics: II. Reaction paths”, Journal of the European Ceramic Society, 19(13), 2337-2348 (1999).
  • [54] Rosenflanz, A., and Chen, I. W., “Kinetics of phase transformations in SiAlON ceramics: I. Effects of cation size, composition and temperature”, Journal of the European Ceramic Society, 19(13), 2325-2335 (1999).
  • [55] Petzow, G., and Herrmann, M. “Silicon Nitride Ceramics. Structure and Bonding”, 102, Springer-Verlag Berlin Heidelberg, 47-166 (2002).