MODEL BİYOKÜTLE OLARAK SEÇİLEN MISIRDAN HİDROTERMAL YÖNTEMLE DEĞERLİ KİMYASALLARIN ELDESİ

Bu çalışmada mısır model biyokütle olarak seçilmiş ve suyun kritik altı (225°C, 300°C) ve yakın kritik (375°C) şartlarında bir otoklav içerisinde hidrotermal dönüşüm işlemine tabi tutulmuştur. Bu işlemler sonucunda ele geçen sulu fazların içerisindeki organik asitler (asetik asit, formik asit, glikolik asit vb), fenoller (fenol türevleri, o-kresol, m-kresol vb.), furfurallar (furfural, metil furfural, hidroksimetil furfural vb.) gibi bileşik grupları HPLC (Yüksek basınçlı sıvı kromatografisi) ile analiz edilmiştir. Sulu fazın toplam organik karbon (TOK) içeriğine bağlı olarak yüzde karbon içeriği de hesaplanmıştır. Katı faza ayrıca SEM analizi uygulanarak dönüşüm esnasında katı yüzeyinde meydana gelen değişimler gözlenmiştir.  

___

  • [1] Angın D., Şensöz S., “Aspir (Carthamustinctorius L.) tohumu pres küspesinden sentetik sıvı yakıt eldesi ve sıvı ürün (katran) karakterizasyonu”, V.Ulusal Temiz Enerji Sempozyumu 2004, İstanbul. (2004).
  • [2] Enerji raporu, Dünya Enerji Konseyi Türk Milli Komitesi, Ankara,(1998).
  • [3] Jones M.R., “Biomass for energy (General) , Biomass handbook.” Gordon & Breach Publishers, Amsterdam, 97-107 (1989).
  • [4] Ate F. “Biyokütlenin sabit yatak pirolizine katalizörün etkisi”, V.Ulusal Temiz Enerji Sempozyumu 2004, İstanbul, (2004).
  • [5] Saka S, Konishi R., “Chemical conversion of biomass resources to useful chemicals and fuels by supercritical water treatment” In: Bridgwater AV (ed) Progress in thermochemical biomass conversion. Blackwell, Oxford, 1338 –1348 (2001).
  • [6] Demirbaş A., “Biomass resource facilities and biomass conversion processing for fuels and chemicals”, Ener. Conver. and Manag., 42 : 1357-1378 (2001).
  • [7] Söğüt, O. Ö., Akgün, M., “Treatment of textile wastewater by supercritical water oxidation in continuous flow reactor”, J. Supercrit. Fluids, 43: 106–111 (2007).
  • [8] Lu Y. J., Guo L. J., Ji C. M., Zhang, X. M., Hao X. H. and Yan Q. H., “Hydrogen production by biomass gasification in supercritical water: A parametric study”, Int. J. of Hydro. Ener., 31: 822-831 (2006).
  • [9] Hao X., Guo L., Zhang X., Guan Y., “Hydrogen production from catalytic gasification of cellulose in supercritical water”, Chem. Eng. J., 110: 57-65 (2005).
  • [10] Calzavara Y., Joussot-Dubien C., Boissonnet G., Sarrade S., “Evaluation of biomass gasification in supercritical water process for hydrogen production”, Ener. Conver. and Manag., 46: 615-631 (2005).
  • [11] Sınağ A., Kruse A. and Scwarzkopf V., “Key Compounds of the Hydropyrolysis of Glucose in Supercritical Water in the Presence of K2CO3”, Indust. & Eng. Chem. Res. 42: 3516 –3521 (2003).
  • [12] Kruse A., Henningsen T. Sınağ A., Pfeiffer J., “Biomass Gasification in Supercritical Water: Influence of the Dry Matter Content and the Formation of Phenols”, Indust. & Eng. Chem. Res. 42: 3711 – 3717 (2003).
  • [13] Sınağ A., Kruse A. and Scwarzkopf V., “Aufbau- bzw. Abbaupfade von gebildeten Zwischenprodukten bei der Hydropyrolyse von Glucose als Modellsubstanz für nasse Biomasse im Rohrreaktor”, Chem. Ing. Tech. 75: 1351 – 1355 (2003).
  • [14] Sınağ A., Kruse A. and Rathert J., “Influence of the Heating Rate and the Type of Catalyst on the Formation of Key Intermediates and on the Generation of Gases during Hydropyrolysis of Glucose in Supercritical Water in a Batch Reactor” Indust. & Eng. Chem. Res. 43: 502 – 508 (2004).
  • [15]. Sade, B., Çumra İlçesi Sulu Şartlarında Bazı Melez Mısır Çeşitlerinin Önemli Zirai Karakterleri Üzerinde Araştırmalar, Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Ens. (1987).
  • [16] Amerika Tarım Bakanlığı Veritabanı - USDA ( US Department of Agriculture) www.usda.gov
  • [17] Kabyemela, B.M., Adschiri, T., Malaluan, R., Arai, K. “Degradation Kinetics of Dihydroxyacetone and Glyceraldehyde in Subcritical and Supercritical Water”, Ind. Eng. Chem. Res. 36: 2025-2030 (1997).
  • [18] Kabyemela, B.M., Adschiri, T., Malaluan, R., Arai, K. “Glucose and Fructose Decomposition in Subcritical and Supercritical Water: Detailed Reaction Pathway, Mechanisms and Kinetics”, Ind. Eng. Chem. Res. 38: 2888-2895 (1999).
  • [19] Sasaki, M., Kabyemela, B., Malaluan, R., Hirose, S., Takeda, N., Adschiri, T., Arai, K. “Cellulose Hydrolysis in Subcritical and Supercritical Water”, J. Supercrit. Fluids 13: 261-268 (1998).
  • [20] M.J.Antal, Jr.W.S.L.Mok. “Mechanism of Formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and Sucrose”, Carbo. Res. 199: 91-109 (1990).
  • [21] H.R. Appell, Y. C. Fu, S. Friedman, P.M. Yavorsky, I. Wender, Breau of Mines Report of Investigations, 7560 (1971).
  • [22] Minowa T, Fang Z, Ogi T, Varhegyi G., “Liquefaction of cellulose in hot compressed water using sodium carbonate: products distribution at different reaction temperatures”, J. Chem. Eng. Japan, 30: 186–190 (1997).
  • [23] Srokol, Z., Bouche, A. G., Estrik, A., Strik, R.J.C., Maschmeyer, T., Peters, J. A. “Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds”, Carbo. Res., 339: 1717–1726 (2004).
  • [24] Mok, W.S., Antal, M. J., “Formation of Acrylic Acid from Lactic Acid in Supercritical Water”, J. Org. Chem 54: 4596-4602 (1989).
  • [25]Li, L., Portela, J. R., Vallejo, D., Gloyna, E. F., “Oxidation and Hydrolysis of Lactic acid in Near-Critical Water”, Ind. Eng. Chem. Res. 38: 2599-2606 (1999).
  • [26] Yaylayan, V.A., Keyhani, A., Wnorowski, A. “Formation of Sugar-Specific Reactive Intermediates from 13C-Labeled LSerines” J. Agric. Food Chem. 48: 636-641 (2000).
  • [27] Sato, N., Quitain, A. T., Kang, K., Daimon, H., Fujie, K., “Reaction Kinetics of Amino Acid Decomposition in High-Temperature and High-Pressure Water”, Ind. Eng. Chem. Res. 43: 3217-3222 (2004).
  • [28] Watanabe, M., Iida, T., Inomata. H., “Decomposition of a Long Chain Saturated Fatty Acid with Some Additives in Hot compressed Water” Ener. Conver and Mana., 47: 3344-3350 (2006).
  • [29] Holliday, R.L., King, J.W., List G.R., “Hydrolysis of Vegetable Oils in Sub- and Supercritical Water”, Ind Eng Chem Res 36: 932 - 935 (1997).
  • [30] Belsky, A. J., Maiella, A. G., Brill, T.B., “Spectroscopy of Hydrothermal Reactions 13. Kinetics and Mechanisms of ecarboxylation of Acetic Acid Derivatives at 100−260 °C under 275 bar” J Phys Chem A 103: 4253 - 4260 (1999).
  • [31] Watanabe, M, Inomata, H., Smith, R. L., Arai, K., “Catalytic decarboxylation of acetic acid with zirconia catalyst in supercritical water”, Appl Catal A, 219: 149 -156 (2001).
  • [32] Dunn, J.B., Burns, M.L., Hunter, S. E., Savage, P. E., “Hydrothermal stability of aromatic carboxylic acids”, J Supercrit Fluids, 27: 263- 267 (2003).
  • [33] Karayıldırım, T. Sınağ, A. Kruse, A. “Char and Coke Formation as Unwanted Side Reaction of the Hydrothermal Biomass Gasification”, Chem. Eng. Technol. 31: 1561-1568 (2008).