MERKEZİ BASINÇ ALTINDAKİ ÇİFT KONSOL YÜKSEK DAYANIMLI BETON NUMUNE DAVRANIŞLARI ÜZERİNDE BOYUT ETKİSİ

Yüksek dayanımlı betondan hazırlanan çift konsol elemanlara, konsol eksenlerine paralel basınç yüklemesi uygulanmıştır. Yüklemeler iki farklı mesnetlenme durumunda uygulanarak birbirleriyle karşılaştırılmıştır. Numune kalınlıkları sabit olup t=30 mm’ dir. Diğer boyutlar  büyük numuneden küçük numuneye doğru 4:2:1 benzerlik oranlarına sahiptir. Her numunede 2 yatay ve 1 düşey yerdeğiştirme ölçülmüş, konsol uçlarında ölçülen yatay yerdeğiştirmelerin toplanmasıyla açılma yerdeğiştirmesi bulunmuştur. Her numuneye ait yük- açılma yerdeğiştirmesi eğrilerinin altında kalan alanlardan, enerji yutma kapasiteleri tesbit edilmiştir. Deney sonuçları boyut etkisi eğrileri şeklinde düzenlenmiş ve boyut etkisi parametreleri elde edilmiştir. Deneylerin Ansys 5.4 sonlu elemanlar programıyla benzeşimi yapılmış, yine bu program yardımıyla elemanların kırılma toklukları bulunmuştur. 

SIZE EFFECT ON BEHAVIORS OF DOUBLE CANTILEVER HIGH STRENGTH CONCRETE SPECIMENS UNDER THE CENRIC PRESSURE

Double cantilever beams elements which prepared from high strength concrete are applied compressive loads paralel to cantilever axes. Loadings are applied to two different supported and compared with each other. Specimen thickness t is constant and 30 mm. Other sizes are geometrically similar with ratio is from large specimens to little specimens 4:2:1. Two horizontal and one vertical displacemens are measured for each specimens and oppening displacements are found for adding to horizontal displacements for each cantilever ends. Energy absorbed capacities are determined by utilizing from each specimen area of under the load- oppening displacement curve. Test results are arranged for size effect curve and size effect parametters are obtained. Experiments are simulated with Ansys 5.4 finite element programs and though fracture toughnesses are found with helping this program. 

___

  • [1] Kaplan F.M., “Crack propagation and the fracture of concrete”, J. American Concrete Institute, 58, 591- 610 (1961).
  • [2] Shah, S.P. and McGarry F.J., “Griffith fracture criterion and concrete”, J.Eng. Mech. Div. – ASCE, 97, 1663- 1676 (1971).
  • [3] Bazant, Z. P., Oh, B. H .“Crack band theory for fracture of concrete”, Mater. Struct, 16, 155-177 (1983).
  • [4] Elices M., Planas J., “Material models in fracture mechanics of concrete Structures”, L.Elfgren, ed., Chapmann and Hall, London, 16-66 (1989).
  • [5] Ouyang, C., Tang T., Shah S.P., “Relationship between fracture parameters from two parameter fracture model and size effect model”, RILEM, Materials and Structure, 29, 79-86 (1996).
  • [6] Barenblatt G.I., “Mathematical theory of equilibrium cracs in brittle fracture”, Advances in Applied Mechanics, Vol.7, Academic Pres 51-129 (1962).
  • [7] Tang T., Ouyang C., Shah S.P., “A simple method for determining material fracture parameters from peak loads”, ACI, Materials Journal, 93(2) 147-157 (1996).
  • [8] Bazant, Z.P., “Size Effect”, International Journal of Solids Structures, 37, 69-80 (2000).
  • [9] Carpinteri A., Chiaia, B., “Size effects on concrete fracture energy: dimensional transition from order to disorder”, RILEM, Materials and Structures, 29, 259-266 (1996).
  • [10] Carpinteri A., Chiaia B., “Embrittlement and decrease of apparent strength in large sized concrete structures”, Sadhana, Vol.27/4, 425-448 (2002).
  • [11] Carpinteri A., Chiaia B., Ferro G., “Multifractal scaling law for the nominal strength variation of concrete structures in size effect in concrete structures”, E&FN Spon, London 193-206 (1994).
  • [12] Bazant Z.P., and Cao Z., “Size effect in shear failure of prestressed concrete beams” , ACI Journal, Proceedings, 83(2), 260-268 (1986).
  • [13] Şener, S., “Size effect in bond solices tests”, FIP’92 Symposium, Budapest, Hungary, 357- 362 (1992).
  • [14] Wisnom M. R., “Size effects in the testing of fibre- composite materials”, Composites Science and Technolagy, 59, 1937-1957 (1999).
  • [15] Şener S., Begimgil M., Belgin Ç., “Size effect on failure of concrete beams with and without steel fibers”, ASCE Journal of Materials in Civil Engineering, 14(5), 436-440 (2003).
  • [16] Bazant Z.P., Zaoyang G., “Size effect and asymptotic matching approximations in strain-gredient theories of micro-scale plasticity”, İnternational Jornal of Solids and Structures, 39, 5633-5657(2002).
  • [17] Taha R.M.M., Xiao X., Yi J., Shrive N. G., “Evaluation of flexural fracture toughness for quasi -brittle structural materials using a simple test method”, Can. J. Civ. Eng., Vol.29, 567-575(2002).
  • [18] Koç V. ve Şener S., “Lifli Beton Çift Konsolun Basınç Göçmesinde Boyut Etkisi”, Yapı Mekaniği Laboratuarları Toplantısı II, TÜBİTAK, Konya, 169-172 (2003).
  • [19] Koç V. ve Şener S., “Hafif ve normal betondan yapılmış çift konsol numunelerin basınç göçmesinde boyut etkisi”, Türkiye İnşaat Mühendisliği XVII. Teknik Kongre ve Sergisi, İstanbul, 137-141(2003).
  • [20] Koç V. ve Şener S., “Eksenel doğrultuda basınç yüklü çift konsollarda boyut etkisi”, Advances in Civil Engineering, 6th International Conference, Boğaziçi Ünv., İstanbul, 531- 540 (2004).
  • [21] Bazant Z. P., “Size effect in blunt fracture: concrete, rock, metal”, J. Engng. Mech. ASCE, 110, 518-535 (1984).
  • [22] TS500, “Betonarme yapıların tasarım ve yapım kuralları”, Türk Standartları Enstitüsü, Ankara, 12, (2000).
  • [23] Bazant Z.P. and Planas, J., “Fracture and size effect in concrete and other quasibrittle Materials”, CRC Press, Boca Raton, Fla. (1998).